

Copyright 2005 Career & Professional Group, a division of Thomson Learning, Inc.
Published by Charles River Media, an imprint of Thomson Learning Inc.
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system of any
type, or transmitted by any means or media, electronic or mechanical, including, but not
limited to, photocopy, recording, or scanning, without prior permission in writing from the
publisher.

Cover Design: Tyler Creative
Cover Images: Ed Byrne

CHARLES RIVER MEDIA

25 Thomson Place

Boston, Massachusetts 02210
617-757-7900

617-757-7969 (FAX)
crm.info@thomson.com
www.charlesriver.com

This book is printed on acid-free paper.

Ed Byrne. Game Level Design.

ISBN-13: 978-1-58450-369-9
ISBN-10: 1-58450-369-6

All brand names and product names mentioned in this book are trademarks or service marks
of their respective companies. Any omission or misuse (of any kind) of service marks or trade-
marks should not be regarded as intent to infringe on the property of others. The publisher
recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.

Library of Congress Cataloging-in-Publication Data
Byrne, Edward, 1975-
Game level design / Edward Byrne.
p. cm.

1. Computer games--Design. 2. Video games—Design. I. Title.
QA76.76.C672B97 2005
794.8'1536--dc22

2004023497

Printed in the United States of America
077654

CHARLES RIVER MEDIA titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc. For additional information, please contact the Special Sales Depart-
ment at 800-347-7707.

Requests for replacement of a defective CD-ROM must be accompanied by the original disc,
your mailing address, telephone number, date of purchase and purchase price. Please state the
nature of the problem, and send the information to CHARLES RIVER MEDIA, 25 Thomson Place,
Boston, Massachusetts 02210. CRM’s sole obligation to the purchaser is to replace the disc,
based on defective materials or faulty workmanship, but not on the operation or functionality
of the product.

This book is dedicated to:

My parents, Terry and Cindy, who gave me everything I could ever need.

,w
|

Contents

Acknowledgments

Introduction
What This Book Is About
What This Book Includes
A “Genre Agnostic” Approach
So What Are You Waiting For?

| Introduction to Level Design

Game Design

Level Designers

Anatomy of Level Design
Art
Design
Engineering

Defining Levels

Brief History of Levels
Creating Pinball—The Mother of Level Design
From Pinball Machines to Super Computers
In the Beginning There Was Space War
The Rise of Home Computing

Level Design Today
Overcoming Memory Constraints
Narrative Chapters
Dividing the Workload

Summary

XixX

xxii
xxii
xxiil

XXV

—

O O ® 00 NN N U s e W

10

s'

Contents

Interview with Richard “Levelord” Gray of Ritual Entertainment

2 Building a Simple Level
Level Design Building Blocks
What About Story?

Putting It All Together
Concept
Environment
Beginning
Ending
Goal
Challenge
Determining the Challenge Mechanics
Reward
Failure

Summary

3 Team Roles and the Pipeline
Development Teams
Management

Producers
Project Managers and Assistant Producers
Creative Director
Leads
Design
Game Designers
Level Designers
Systems Designers
Art
Modelers

Animators

12

15
16
18
18
18
19
19
20
20
21
22
26
26
26

29
30
31
31
31
31
32
32
23
33
33
34
34
34

Contents

Texture Artists
Special Effects Artists
Interface Artists
Concept Artists
Programming
Gameplay Programmers
Tools Programmers
Graphics Programmers
Audio
Sound Designers
Composers
Other Development Roles
Cutscene Artists
Writers
Testers
Team Setup
Small Teams
Mid-Sized Teams
Large Teams
The Pipeline
The Unarguable Benefits of a Solid Pipeline
Pipeline and Technology
The Game Engine
The Game Editor
Pipeline as Defined by the Team
Summary

Interview with Hayden Wilkinson of KnowWonder Digital Mediaworks

4 Basic Level Design Theory
What Makes the Level Fun
Player Ergonomics—No Learning by Death
Allow Players to Save and Reload

ix

35
35
35
36
36
37
37
37
38
38
39
39
39
39
40
40
41
41
42
44
45
46
47
47
48
48
48

55
57
59
60

Contents

Give Clues
Be Aware of the Player’s Comfort Level
Level Flow—Keep the Player Moving
Dissonance and the Importance of Believability
The Constant Danger of Boredom
Rhythm—Create a Roller Coaster Rather Than a Highway
Aesthetic Rhythm
Difficulty—Let the Player Win, Not the Designer
Dynamic Difficulty Adjustment
Wow Factor—The Water Cooler Moments
Hooks—Setting Your Level Apart
Summary

Interview with Dream Smith of Griptonite Games

5 Refining the Player Experience
Creating a Level Abstract
What Happens Now?
Connectivity and Defining the Boundaries
The Big Picture
Flow Versus Freedom
Different Flow Models
Gameplay Narrative
Ingredients
Designing Ingredients
Physics as Ingredients
Encounters
Challenging the Player’s Game Knowledge
Creating Tension
Foreshadowing
Lighting
Paradigm Shifts

61
61
62
62
64
67
69
71
74
74
76
77
78

83
84
86
86
86
87
87
93
94
95
96
98
99

100
100
101
101

Contents

Music and Sound

Risks and Rewards

Rewards in General

Scripted Gameplay

Using Artificial Intelligence
States of Being
Decisions, Input and Output
Pathing and Patrols

Level Gestalt

Summary

Interview with Harvey Smith

6 Common Level Design Limitations
Technical Limitations
Memory
Processing Power and Frame Rate
Level Performance
Polycount and Performance
Level Lighting
Artificial Intelligence
Media Format
Target and Minimum Specs
Environmental Limitations
Locations
Environmental Settings
Creating a Reference File
A Final Word: Constraints in Licensed Games

Summary

7 Designing and Documenting the Level

Game Metrics

102
103
103
104
105
105
106
107
109
109
110

121
122
123
124
124
125
127
128
134
135
136
137
137
139
139
139

141
142

xi

Contents

Different Metrics for Different Games
Powerups and Temporary Modifiers
User-Definable Metrics
Permanent Modifiers: Upgrades, Equipment, and Environmental Aids
Generating Gameplay—Brainstorming and Loose-Leaf Ideas
The Cell Diagram
War Rooms
Creating a Paper Design
Getting Started
Adding Details to the Level Draft
Choosing Your Design Environment
Supporting Documents
The Asset List
The Walkthrough
Conceptualizing Your Level with Visuals
Reviews and Revisions
Getting the Sign-Off
Summary

Interview with Ian Fischer of Ensemble Studios

8 Using a Level Editor: Building a 3D Space in UnrealEd

Installing and Opening the Editor
Starting a New Map
Undo and Redo
Viewing the Level in UnrealEd
Moving and Working in Three Dimensions
Camera Movement Controls in the Editor
3D View
Top, Front, or Side Views
Working with Level Geometry
Different Geometry Types in UnrealEd
BSP

144
144
145
146
146
148
149
150
151
151
160
160
160
161
162
163
165
165
166

171
172
173
175
175
177
177
178
178
178
179
179

Contents

Static Mesh
Terrain
Building the Level Hull in BSP
What Is a Brush?
What Is the Builder Brush?
Creating a Builder Brush
Placing Actors
The PlayerStart Actor
Adding Lights
Testing the Level
Loading Textures
Units of Measurement
Apply the Texture to the Level
Moving Actors in the Level
Moving Actors in the 3D View
Moving Actors in the 2D View
Adding a Static Mesh Actor
Changing the Build Parameters
Adjusting and Duplicating BSP
A Final Word on Grids, Snapping, and Clean Geometry

Summary

9 Building the Level Part 1: Basic Building Techniques

Restrain Yourself
The Difference Between 2D and 3D Levels
The Whitebox Process
Whiteboxing the Level Hull
Scale
Scale Problems in Third-Person Titles
Volume
Quality
Popular Level Building Approaches

207
209
209
210
212
213
213
216
217
223

xiv Contents

Building Your Level in Sections
Building in Layers
Customizing Your Building Process
Optimization Techniques
Zones and Portals
Occlusion Objects
Spawners
Test Your Work Constantly
Summary

An Interview with Lee Perry of Epic Games

10 Building the Level Part 2: Visual Design
In a Fight Between Graphics and Gameplay ...
Structure and Beauty, Perfect Together
The Style Guide
Texturing
Textures, Shaders, and Materials
Applying Your Textures Correctly
Using Photos as Textures
Tiling and Nontiling Textures

The Dangers of Stretching Your Textures (and Your Relationship
with the Artists Who Made Them)

Breaking Up Geometry to Support Texturing
Keeping Your Texturing Consistent
Colors Within Textures
Lighting
How Light Works
RGB Versus RYB
Game Lighting
Level Lighting

Lighting Parameters in Games

223
225
227
227
228
230
232
233
234
235

239
240
241
242
243
244
245
246
247

249
250
250
251
252
252
253
253
253
256

Contents XV
Common Light Types 258
Level Lighting Techniques 262
Lighting in Multiplayer Levels 268
Common Lighting Mistakes 269
Placing Props 271
Additional Visual Elements 272
Summary 277
Interview with Mathieu Bérubé of Ubisoft Entertainment, Inc. 277
11 Building the Level Part 3: Theme, Investment, and Atmosphere 281
Dissonance Strikes Back 282
The Elements of a Great-Feeling Level 284
Theme 284
Style 284
Natural Elements 285
Sound and Music 285
Character Accents and Costume 286
Lighting 286
Puzzle Components 287
Al Behavior 287
Weapons and Items 288
Player Investment—Believability and Consistency 288
Provide Real-Life Services 289
Give Your NPCs Life Beyond Their Purpose 289
Don’t Mistake Realism for Immersion 290
Atmosphere 293
Letting the Player’s Imagination Do the Work 293
Atmospheric Audio 298
Summary ‘ 298
An Interview with Rich Carlson of Digital Eel 299

xvi Contents

12 A Case Study: The CIA Level from Tom Clancy’s Splinter Cell 305
An Introduction to Splinter Cell 306
The Team 307
The Pipeline ‘ 307
Creating the Level Design Structure 307
Mission 2.1—The CIA 308
Assembling Reference 312
The Design Process 315
Building the CIA from Scratch 318
The Danger of Unknown Metrics 320
Shifting Technical Limitations 320
Reducing the Scope 321
Cutting Back on Content 321
Resuming Production 323
Cleaning Up 324
Scripting 325
Tuning 327
Adjusting the Difficulty 327
Wrapping Up 328
Summary 328
What Went Wrong 328
What Went Right 329
13 Final Word 331
The End of the Beginning 332
Where to Go Next 332

Books 332

Web Sites
Thanks To You, the Reader

Appendix About the CD-ROM

Index

Contents

333
333

335

339

= Acknowledgments

This book would not have been possible without the tremendous support from a
number of individuals:

Jenifer Niles and Charles River Media for their patience, professionalism, and the
opportunity to write this book in the first place.

Mathieu Bérubé, Rich Carlson, Ian Fischer, Richard “Levelord” Gray, Lee Perry,
Dream Smith, Harvey Smith, and Hayden Wilkinson for graciously taking time to
answer my questions and shed light into the dark corners of level design.

To my friends Neil Alphonso, Del Chafe, Jess Crable, Eric Dallaire, Crista Forest,
Raphael van Leirop, R.J. Martin, Christine Miller, and everyone at GI, for their un-

wavering support, assistance, and advice on the book.

And most importantly, to Ciaran, Willow, and my unfailingly amazing wife, Katja.

Xix

Introduct

b
&

Game Level Design

hanks for picking up this book. Perhaps you have an interest in designing

great levels for games, either as someone who wants to know how levels are

made, or someone who wants to make levels professionally for commercial
titles. If that’s the case, you’re in the right place, and it’s most certainly the right
time. Level design is a fast-growing and diverse part of game development. In writ-
ing this book, I have tried to convey the theory, realities, and advice I have acquired
in my time as an artist, game designer, and level designer.

WHAT THIS BOOK IS ABOUT

What you won’t find in this book are complex lessons or tutorials on making levels
for specific games and technology. The technology that drives games evolves so
quickly; much of the information would be outdated within a year or two. This
book is not about architecture, game art, or scripting, either. There are countless ar-
ticles, tutorials, and books available on these and other level-design related subjects
in your local library and on the Internet. Instead, this book is about the fundamen-
tals of level design—to help you on your way by teaching you common procedures
for designing, drafting, and creating interactive environments for games. For in-
stance, what does it mean to be a level designer on a development team? As a level
designer, you will be in contact with every department on your team, and operate on
the frontlines of the production process, creating game content and fixing critical
problems. This book will explain what level design is, where it came from, and, most
importantly, how to plan, design, and construct levels professionally for modern-
day computer and video games.

WHAT THIS BOOK INCLUDES |

Game Level Design includes a comprehensive look at the basic, advanced, and real-
world techniques used to create game levels for hit titles. This book also contains a
selection of interviews with notable level designers to provide both supporting, and
alternative, views on the craft, as well as valuable information about designing lev-
els from people working in all aspects of the games industry. In order of appear-
ance, interviewees include the following:

Introduction XXiii

Richard “Levelord” Gray, Ritual Entertainment
Hayden Wilkinson, Knowwonder Entertainment
Dream Smith, Griptonite Games

Harvey Smith, formerly of Ion Storm

Ian Fischer, Ensemble Studios

Lee Perry, Epic Games

Mathieu Bérubé, Ubisoft Entertainment Inc.
Rich Carlson, Digital Eel

Level Design Tools

i
ON THE CD

Included on the companion CD-ROM are the following level design tools:

Photoshop LE, a trial version of the industry-standard two-dimensional graph-
ics tool

Unreal 2 Runtime Demo, a free version of the acclaimed Unreal engine and
level editor used to create diverse titles such as Unreal Tournament 2003, Splin-
ter Cell, Thief 3, Republic Commandos, Harry Potter and the Prisoner of Azkaban,
and Lineage 2

Terragen, the free version of the classic shareware program that generates some
of the most realistic looking skies and landscapes for use in game levels
OpenOffice, a free and fully featured open source office suite that contains
everything a level designer needs for documentation and design communication
Textures and environments I used to create the illustrations in this book

A “GENRE AGNOSTIC” APPROACH

Although the content in the book uses many examples from popular genres such as
first-person shooters (FPSs) and real-time strategy (RTS) games, the approach is
designed to teach about level design as a genre- and platform-independent craft. All
games need to take place in environments, and by extension, the rules of level de-
sign apply to all games to some degree.

xxiv

Game Level Design

SO WHAT ARE YOU WAITING FOR?

Level design is a unique position in game development where you can determine
exactly what the player sees, hears, and feels in the game. Sound like a lot of work?
Itis, to be sure, but it’s also a lot of fun. Game development is highly collaborative,
and extremely experimental, an environment for dreamers, visionaries, and world
builders. It requires determination as much as imagination, and restraint as much
as it does enthusiasm. Despite the long hours, the reward of seeing your game on a
store shelf, or hearing people talk about one of your levels on the street, is an in-
credibly fulfilling experience. If this sounds like something you want to be a part of,
I'hope you’ll pick up this book and enjoy reading it as much as I did writing it. The
game world is your oyster, level designer!

ENGINEERING
ART DESIGN

\l/

LEVEL DESIGN

Y
FINAL PRODUCT

2 Game Level Design

In This Chapter

Game Design

Level Designers

Anatomy of Level Design

Defining Levels

Brief History of Levels

Level Design Today

Summary

Interview with Richard “Levelord” Gray of Ritual Entertainment

EEEREEEREBE

people what you do. This chapter will explain what levels are, where they
came from, who makes them, and what “level design” means for the pro-
duction of a modern video or computer game,

O ne of the hardest things about being a level designer is trying to explain to

GAME DESIGN

Everything that is made has a designer. A designer formulates plans for creating
products from concepts. In games, the designer is the person who often conceives
the original ideas, puts them on paper to present to others (in the form of a design
document or rough demonstration), and supervises the transition from design to a
working video game.

Being the player’s advocate is the highest function of a game designer during
the entire process of making a game. Simply put, this means that designers are the
“eyes and ears” of the player, and represent the interests of the audience during the
production. If a problem occurs in creating a game such that the player’s needs are
not met, the designer must find a solution. When someone on the team wants to
add something he feels is really cool, it’s the designer’s job to evaluate the addition’s
potential risks, how much players will really use it, and what changes it will make
to the players’ experience, good or bad. In the end, we make games for the players,
not for ourselves, and designers are the people on the team who must always be able
to see the game through the eyes of a player, rather than through the eyes of a tired
developer who knows the product inside and out.

On a day-to-day basis, game design is primarily about creating and intercon-
necting all the elements that make up a game—the mechanics—and creating an ap-
pealing world in which to house them. Different types of nonplayer characters
(NPCs) and their behaviors, weapons, and tools that the player will use and their ef-
fects; locations; items; on-screen interfaces; mood; emotional reaction; controls;

Introduction to Level Design 3

and camera views—all these things need to be considered in the early stages of de-
veloping a game. These days, a design team handles the work of documenting and
implementing design decisions. This will be discussed in a later chapter, but the size
of modern games means that the days of a single designer making all the decisions
are quickly coming to an end.

- LEVEL DESIGNERS

When it comes to actually creating the game from these beginning elements, a spe-
cialist is needed to implement the design. This is the essence of level design—the
application of the team’s ideas in a playable form. A level designer is the point of
convergence for programming, cinematography, audio, art, and design—all of the
components of a modern computer or video game as shown in Figure 1.1. Game
designers create rules and systems that form the backbone of every game, but a level
designer implements them and makes them work properly. In addition, level de-
signers carve out environments, create interesting visuals, monitor the performance
of the game, make sure that technical problems are resolved before the product hits
the shelves and fixes problems in the game. That’s a pretty exhausting list of re-
sponsibilities. As such, level design is an extremely important role in today’s pro-
duction team—ultimately, the player experiences the game through a game’s levels.

ENGINEERING
DESIGN

\l/

LEVEL DESIGN

ART

Y
FINAL PRODUCT

FIGURE 1.1 Art, design, and
code all funnel into level design.

The level designer is an omnipotent power in the game, responsible for leading
the player through the experience. However, the less the players feel the designer’s
presence, the more they will feel in control of their own virtual destiny. A good level

Game Level Design

designer will create a level that is full of decisions players make. A great level de-
signer will allow players to feel like they are making the right decisions, even if they
really aren’t. Partly, this can be through the illusion of choice—allowing the player
three ways to choose that all lead to the same room, for example, is an easy way of
letting the players make the surface decisions (“Which way do I go now?”) while
maintaining control of their ultimate destinations. This can be taken further with
concepts like systemic level design where players are given a high degree of freedom
in the environment, but can still be guided along a narrative path. We’ll discuss the
different approaches to level design flow in Chapter 5.

On a visual front, level designers use the same art of illusion to create spaces
that feel much bigger than they really are. For a game like Unreal Tournament, this
might mean creating the illusion of an underwater world outside the window of an
undersea base—even though there’s nothing really out there. For a title like Need
for Speed: Underground, this could be the multitude of inaccessible but plausible
side streets and landmarks seen between buildings that give players the sense they
are racing through a city rather than just on a single track.

Regardless of the type of game or what platform it is for, until we work out a
way to create worlds with as much rich detail and level of immersion as real life has,
level designers will have to rely on the art of illusion to create believable and enjoy-
able game spaces.

ANATOMY OF LEVEL DESIGN

Art

Level Design is really a composite role, bringing together several disciplines: art, de-
sign, and engineering.

In the past, games could often reach critical acclaim without the need to be visually
stunning. These days, to create an interesting and atmospheric environment, a level
designer must have some measure of artistic or architectural sense. A level that is
well balanced, fun to play, and packed full of surprises will still face player criticism
if the environment is crudely built or features a lot of obviously amateur art. Like-
wise, an architecturally impressive map with nothing to do in it is going to cause
players to complain. Balancing artistic considerations with gameplay needs is an
everyday struggle for the modern level designer. Although some designers can cre-
ate many of their own art assets and take the visual quality of their maps into their
own hands (schedule permitting), others may have more knowledge in a specific
area such as modeling, texturing, lighting, or simply taking a few primitive shapes
and evoking just the right emotions and imagery in the audience.

Introduction to Level Design 5

As games get more complex and level designers are responsible for more am-
bitious content, many teams are adding art support staff to help shoulder the bur-
den of creating engaging aesthetics and allowing the designers to focus on the play
experience. Regardless of who makes a level’s assets, however, the level designer still
holds the vision of the level and will be required to lend direction and vision to his
team members during production. Some of the best level designers don’t have an
artistic background but, rather, use books and images to help them make interest-
ing spaces. Level design does not require an art degree by any means; however, a
level designer should be able to illustrate or describe the artistic needs and aesthetic
requirements of the map to his team members.

If you’re reading this and despairing—don’t worry. Most of what makes a good
artist is imagination, and the fact that you are, or want to be, a level designer is a
pretty good indication that imagination is something you possess. Learning how to
use your imagination wisely is something that can be learned—many great books
teach the fundamentals of architecture, lighting, texture creation, and the like, ex-
amples of which will be included in later chapters.

Although the amount of pre-design that goes into a level before building starts
varies, there will always be times when a level designer needs to make a design de-
cision in the process of constructing the map. We’ll talk about this later in the
book, but the level designer should be able to handle the implementation of the
game design to achieve the goals for that map.

After the initial placement of game elements—after you’ve put in your enemy’s
units, your traps, puzzles, powerups, and everything that the player is going to in-
teract with, you’ll need to “tune” it all. Early drafts of levels are often disjointed and
unbalanced, and unacceptable to release to the public. A level designer’s game in-
tuition is vital at this stage to go through the level and polish it, tweaking parame-
ters, editing the variables for NPCs, trying to anticipate potential problems and
ultimately designing an enjoyable experience for the player.

Level designers also need to be able to spot problems as they work and report
them to the designer or producer. If the game designer is the general directing the
game from above, level designers are scouts, on the front line of production and able
to see potential trouble up close and personal, if they just know what to look for.

Engineering

Although the gulf of knowledge between scripting a level event and actually pro-
gramming game engine functionality is sizable, some aspects of level design are
closer to coding than anything else. Games frequently have an internal “script” sys-
tem that allows designers to access parts of the game code in a more user-friendly

6 Game Level Design

manner. The means differ from project to project, and some level designers need to
be more versed in their game’s scripting language than do others who might use
simpler or more streamlined tools for setting up in-game events or editing level el-
ements. However, the process is still the same—level designers will invariably be
called on to plan, execute, and debug special situations in a level.

As games support larger worlds and more intricate stories, many developers
rely more heavily on scripting to provide a sense of realism and action to the envi-
ronment, as well as to create bigger and more elaborate situations for the player.
Boss battles, patrols, the behavior of certain objects when hit with a projectile or the
behavior of a civilian when seeing one of the player’s units—all these things are po-
tentially scripted by the level designer. As such, any knowledge about scripting or
programming can come in quite useful when making playspaces.

Another aspect of level design is technical in nature—performance. Level de-
signers are usually expected to bear a large responsibility for how their environ-
ments run. Every game has limitations in how complex the world can be, how
many moving characters can be calculated, and how many textures or lights can be
displayed in a scene before the game engine is overtaxed and the performance of
play degrades. This often results in loss of frame rate—the view becomes jittery and
the controls become hard to use. Further problems such as objects overlapping the
same space, or errors in the geometry, can cause technical problems too. In general,
the performance issue is one that becomes more and more important as the project
nears the final shipping date, and a level designer needs to know not only how to
spot these problems in a map but also how best to deal with them—be it a work-
around, remaking that part of the level, or even amputating the whole section from
the map.

DEFINING LEVELS

The term level is synonymous with “map,” “mission,” or “stage” in many games. The
original term level in games most likely comes from the early arcade machines and
home game systems where the play experience was divided into increments of diffi-
culty, called stages or levels. For instance, once the player had finished the first wave
of enemies, he was considered to have finished “Level One” of however many levels
of difficulty the game allowed. These levels were descendants of “Dungeon levels” in
early role playing and tabletop games like Dungeons and Dragons, which divided the
game environments—most often dungeons and subterranean structures—into ver-
tical floors, which not only determined how deep the players were, but also gave an
indication of how powerful the creatures would be. Level Five creatures were obvi-
ously going to be a much bigger challenge than mere Level Ones, being further from
the surface and the safety of retreat.

Introduction to Level Design 7

A modern game level has a wide range of forms. A common example is a sin-
gle Deathmatch or Capture the Flag map you might play in your favorite shooter. Or
it could be a track in a racing game, or simply the maze from PacMan. At its most
basic, a level is simply an environment for gameplay. Does a level have discernible
characteristics? Well, it has physical boundaries. It has entrances and exits. It has
goals, and it has a beginning and an ending—or it has many of them. A level can
contain almost all the game’s systems and mechanics, or it can focus on a single ac-
tivity. Some levels are unique, such as a boss level. Some levels are crossed through
repeatedly like the parts of the city that compose those of Grand Theft Auto 3.

Every game takes place in an environment, and that’s what level designers must
provide—putting the “ground” in playground. A level is really a container for
gameplay.

BRIEF HISTORY OF LEVELS

As long as there have been games, there have been environments to play them in.
Almost every culture has its version of chess, along with a board to play it on. Even
in the absence of a board, players have scratched playfields in the dirt or scribbled
them on paper like tic-tac-toe. Gameplay needs a vessel in which to exist. Similarly,
although the craft of creating interactive environments for video games is fairly
new, there is a great deal of history behind it.

Creating Pinball-The Mother of Level Design

Although the level designer position as a team role has only been around for the
past 10 years or so, games have always needed play fields. In fact, the first examples
of “playfield design” started back in the days when pinball was becoming a national
pastime. Early versions of pinball—called bagatelle —were random affairs. The ball
was entered into the playspace and found its way down through the layout of pins
until it came to rest in a numbered hole. The player really didn’t have much con-
trol of the ball once it was in play. Although there was some excitement watching
the ball progress through the pins, it was more akin to pulling the lever on a slot
machine, or watching a movie—once the initial interaction of starting the process
was over, the participant could only watch helplessly as events unfolded.

When pinball designers began to add in the element of interactivity, such as the
addition of flippers or the ability to guide the ball into reward-rich areas (i.e., a part
of the board with a cluster of high-scoring bumpers, or triggering the release of
bonus balls), the game made its move from passive to active entertainment. Much
in the way that even though building a game level shares many common elements

8 Game Level Design

with building a movie set or describing a location in a book, what sets it apart is in-
teractivity—the player has the opportunity to choose and alter the flow of events to
his desires. That’s the “play” in gameplay.

Itis interesting to note the similarity between pinball design and modern level
design. Both were concerned with the funneling of an avatar—in pinball’s case, the
player avatar was a small metal ball—through an interactive playfield full of re-
wards and hazards. With each generation of pinballs, the designers had to create
new variants on old favorites and develop original ideas to keep players interested.
Level designers would do well to look back to the golden age of pinball because
these are our real roots—the first examples of interactive environment design.

From Pinball Machines to Super Computers

As computers began to appear in universities in the 1970s, eager engineers started
turning them to recreational uses, and the transition from the pinball table to video
screen began. Unfortunately, the capabilities of computer-driven playfields were vastly
inferior to the long-established mechanical pinball machines. In addition, the people
making video games were almost always engineers and students taking a break from
their real work, rather than professional game designers, so the art of playfield design
had to start all over again, accounting for the new display and control methods.

In the Beginning There Was Space War

Widely considered the grandfather of all computer games, Space War was actually
displayed on an oscilloscope and contained only a single planet at the center for two
players to fight around against a backdrop of stars. This could be considered the
first video game level. The planet was not just for decoration—it exerted gravita-
tional influence on the players’ ships and projectiles. Thought went in to creating
an interesting playspace when really, if it had simply been a blank background, no
one would have complained.

As games matured, their playspaces matured also. More attention was given to
the way game environments looked, and the kinds of experience different environ-
ments could give the player. Care was taken to ensure the player was steadily chal-
lenged through shifts in environmental parameters. Music and audio played more
important roles in both inviting players to the game and providing feedback about
their performance. Gradually gameplay went from one-screen action (like Pong or
PacMan) to multiscreen or scrolling environments like Pitfall and Tempest, where
the player was suddenly given greater opportunity for discovery and greater free-
dom of movement. Playspaces became richer, and gameplay rules more complex.
Defender, for instance, featured a rapidly changing environment, intense special ef-
fects, and audio feedback. Defender was one of the first games where the player was
informed of things happening in another location by audio cues—when a “human”

Introduction to Level Design 9

was converted into an enemy unit, a specific sound effect played. Although the lev-
els allowed the player to travel left and right over the landscape, randomly moving
opponents of varying speeds and accuracy meant simple travel in a straight line was
impossible and the experience of each stage was always slightly different. Even
though the controls were fairly simple, the sheer complexity and intensity of the
levels made Defender a favorite for hard-core arcade junkies.

Similarly, for home systems, the Atari game Adventure had a randomization
routine that meant the player didn’t know where all the necessary items in the
game were each time he played. The game was laid out on a number of screen-sized
rooms that the player would travel between, dodging dragons and collecting re-
quired components to beat the game. The first fledgling elements of level design
were being born to the gaming world.

The Rise of Home Computing

In the 1980s, the rise of home-gaming on consoles and personal computers meant
gamers were hungry for greater challenges, and developers quickly responded with
more advanced level design concepts. Armed with more computing power and in-
creased storage capacity on modern gaming machines, the basic elements of earlier
genres such as moving platforms and enemies with simple, looping attack patterns
were combined and evolved in different ways to create new challenges for the player.
Designers strove to encourage exploration by hiding special rewards or even entire
levels for discovery by the careful player. Environments became more interactive, in-
troducing complex puzzles to block progression and produce richer and more var-
ied gameplay to keep the player challenged. Narrative became an important focus as
games suddenly came with richer back stories and character development rather
than simply suggestive box art. Early text adventures, for example, relied on more
complex story lines and descriptive text to keep the player engaged. A classic adven-
ture in this style was Planetfall, which is widely regarded as being one of the first
games to make players cry because of the death of a character.

However, as involved as these new game environments were, there still wasn’t
a specialized role for their creation yet. Video games were made by only a handful
of people, who handled everything required—programming, art, and design.
Audio expectations were low enough that the programmers often handled those as-
pects too. In the heyday of the video arcade in the 1980s, many games were de-
signed, programmed, and decorated by a single person.

LEVEL DESIGN TODAY

Because of the explosive increase in complexity and in expectations of modern in-
teractive entertainment, it’s not uncommon to find production teams of 30, 50, or

10 Game Level Design

even more than 100 developers working for years to complete a single title. In such
an environment, work is divided up into very narrow specializations, and more
often than not one of these specializations is you—the level designer.

Contemporary level designers have a considerably larger responsibility in game
production today. Fortunately, they also have a much bigger palette of tools and a
huge amount of support in production as well. However, levels are not simply
around because they have a history. Having levels helps a game in many ways, in-
cluding the following:

® Overcoming memory constraints
® Narrative chapters
® Dividing the workload

Overcoming Memory Constraints

In their earliest forms, interactive games were usually simple affairs. Earlier we
mentioned that Space War was played using an oscilloscope to display two ships
and a planet. Pong had variable speeds and opponent response, but the playfield
never changed. Game graphics were limited by ridiculously meager computational
power by today’s standards, and often took place in limited or repetitive environ-
ments. Most importantly, the technology at the time meant that games needed to
load into whatever memory the machine had and stay there until the game was
switched off or reset. Given that available memory capacities at the dawn of the
computer age were minuscule compared with today’s—the need to keep games as
simple as possible was a predominant concern. Later, with the introduction of
portable storage media like floppy disks and tape cassettes, games expanded enor-
mously in both size and scope, and it was impossible to load the whole thing into
computer memory all at once. The concept of levels (or chapters) became more
prominent as a way to break up a game into sections that would only be brought in
when needed. A game that was broken into sections could be much larger than the
available memory of the gaming machine. When each section was finished, it would
be replaced with another section loaded from tape or disk.

Early home computers such as the Commodore 64 or Sinclair Spectrum sub-
jected the player to long waits while stages of the game loaded from tape cassette.
Thankfully, storage media can be read fast enough now that consoles and comput-
ers can quite easily load in specific parts of the game they need from the CD or
DVD without the player ever knowing. However, levels have also expanded in size,
often having large amounts of unique textures, decorative meshes, character mod-
els, scripted sequences, and a host of support content that makes them impossible
to load other than one at a time. Thus, the original concept of breaking a game into
smaller pieces—levels—is still necessary to avoid straining the processor and to
allow epic-sized games to parcel themselves out into bite-sized pieces.

Introduction to Level Design 11

Narrative Chapters

Very commonly, a game’s levels are set up in a narrative fashion, telling a story within
a story. The player character enters the level, explores his surroundings, encountering
increasing challenges and dangers along the way, until the end is reached.

Most games have some form of story or narrative that draws the players along,
and many games use levels as a book would chapters—dividing the story into seg-
ments allowing story arcs, the introduction of new characters, resolution of goals,
unexpected return of old enemies, and so on. In many cases, a level is like a
novella—a short, self-contained story that has an introduction, a series of encoun-
ters and challenges, and a final resolution. As games start to create broader, less lin-
ear story lines, levels begin to contain many story possibilities, which we’ll explore
in greater depth later in Chapter 5 as emergent gameplay.

Levels encompass areas of connected gameplay and provide logical breaks be-
tween key story locations. For instance, one level of a game that uses time travel as a
story element might have the players in Berlin in 1800, and the next level has players
in the same city in the year 3000. Separating these two periods into levels is logical, as
they can be bridged by a cinematic, scripted sequence, or a simple voice-over, to cre-
ate a more dramatic transition between the two locations.

Dividing the Workload

Level design arose out of a need for specialization within game production teams.
As game sales grew, the one-man shows faced new challenges in keeping up with in-
creasing consumer demand for quality and quantity of content. To maintain con-
stant levels of production quality, game teams began to grow in numbers. Aspects
of game development that one person had done previously were gradually being
done by two or three people. With larger teams, programmers who might have
handled both programming and the art were being relieved by full-time profes-
sional artists. Similarly, new positions such as game designers, sound effects engi-
neers, and character animators developed to help spread the effort of creating a
computer game over a wider team of individuals, each with a narrower set of tasks.
The main advantage of creating a game in stages is that it can be built faster,
and production speed can be a huge factor in gaining a publishing deal or getting a
milestone out the door in time. The more you can subdivide your game into dis-
tinct levels, the more designers can work on them simultaneously. In addition, with
the advent of specialized level editors and working environments, the ease of im-
porting and exporting assets (the individual art pieces used to decorate a level—
props, characters, textures, etc.) into a level has improved dramatically. This means
that a level designer can be working on a map while artists, programmers, and
audio engineers all work on content for it, all of which can be imported easily.

12 Game Level Design

This is not to say that designers should seek to break their games into the great-
est number of levels possible. Like everything, there is a point at which simply throw-
ing more people at a problem becomes counterproductive. It does mean, however,
that identifying and capitalizing on logical breaks in story, gameplay, and visual
themes by separating them into levels can help reduce the risk and length of a project.

SUMMARY

This chapter covered the reason that level designers exist today. Having an idea for
gameplay is one thing, putting it into practice is another. Level designers oversee
the convergence of materials into the final package that players experience. Histor-
ically, level design is the extension of early forms of playfield design—from millen-
nia back where game boards were drawn in the sand to the latest in photo-realistic
game environments.

Levels have been used in games for many reasons: to allow for larger games, to
separate the game experience into narrative or geological locations, and to allow the
team to work on the whole game at once.

INTERVIEW WITH RICHARD “LEVELORD” GRAY OF RITUAL ENTERTAINMENT

Richard, you’ve been making levels for quite a while now, and on a varieiy of
projects. How did you get started as a designer?

Like many of the old veterans, I started with Doom. I still remember when
DEU (Doom Editing Utility) came out. I downloaded it from CompuServe.
The whole time it was transferring over my 256K modem, I was thinking
“This can’t be for real. Nobody would let you freely create content for their
proprietary game.” I installed DEU, loaded up E1IM1, and removed one of the
walls. Run the perverted EIM1 in the game and . . . “Oh my god! I can make
my own Doom levels!” I was forever hooked!

I then spent every waking hour of the next six months making four new
Doom levels, which I uploaded to CompuServe’s Action Forum. These caught
the attention of both Q Studios, then working on Blood for Apogee, and
Apogee themselves. I was hired as a contract level designer by Q Studios and
worked for them for almost a year. I was then asked to work on Duke Nukem
3D full-time and came to Dallas, Texas, where I've been ever since.

_)

Introduction to Level Design 13

How has the position of the level designer changed in your opinion, as teams and
budgets get bigger?

When I started, the level designer was responsible for many different tasks.
These included geometry, asset placement, gameplay, player flow, lighting,
balancing, scripting, and some texturing. Now, everything is far more com-
plicated. Most of these tasks are now specialized and performed by one per-
son or subgroup of level designers. The role of the level designer is just as
important, the position just requires more people to do it, and they need to be
more specialized.

It is very similar to a movie. Watch the credits in a 1930s—1950s movie.
They’re scrolled by in less than a minute. Now there is enough time to play
two or three full songs as the thousands of people’s names go by. I expect the
game industry will grow in this fashion many times over in the coming years.

Conversely, do you think the quality and sophistication of level design have in-
creased with the scope of games?

Absolutely! The quality and sophistication are incredibly evolved, and that has
broadened the level designer’s scope. Just reload one of your games from five
years ago . . . even two years ago. It’s hard to look at it and remember that it
was cutting edge in its time.

Do you see any standards emerging in the design and construction of game
spaces? Are there tools, or a language, common to level design?

Standards are still ephemeral. They will emerge, such as tool sets and asset
pipelines, as one game becomes popular and their way of doing things is in
style. For instance, the Quake tools were a standard for a long time. Now,
many level designers are using sophisticated 3D tools such as 3D Max and
Maya for almost all game engines.

When you ask about standards, I presume you mean like in the software
industry where engineering disciplines are used such that individuals can
bounce from one application, project, or company to another with little re-
education. This sort of scale of standardization has not happened yet.

Can you impart some critical lessons you’ve learned in your career so far?

Yes! . . . making games is not fun-and-games, . . . it’s work-and-games! “Tis
true, it’s a dream job and I would not replace it with any other career. How-
ever, it is not the same as playing games at home and thinking you’re the next
great game designer. It is also not like sitting at home and making mods and

—>

14

Game Level Design

such. It is, in fact, long hours of sometimes very tedious work. It is months, at
times, of 12-14 hour days, 6-7 days a week. It is coordinating with the egos of
other teammates, and meddling producers and publishers, and the press that
at times can be brutal, and fellow developers. Your creative juices are most
often sucked into someone else’s sponge. There are heartbreaks, with months
of work thrown out, never to be seen by anyone again.

For someone wanting to land a level design position today, what sort of steps
should they be taking?

There are a few great ways to enter, but you MUST make sure you really want
to do this. I will warn any poser of this question that simply by asking the
question makes me suspicious. Even if I had not started in 1994, you would
not have to tell me how to get hired today. The hunger, the true desire, would
have me looking under every rock for a niche to fit in.

This is what I would do, this is what I did in 1994: Find a game you enjoy
playing that allows access to level editing. Most games do. Make some levels.
Play test them well! Get a Web page going to exhibit them. This is a portfolio.
Get feedback from people (friends and others that have played your levels).
When you think you are polished, start emailing companies and keep an eye
out for job offerings.

There are also some very good schools today, if you can afford the tuition.
Southern Methodist University, for instance, here in Dallas has a great pro-
gram setup by many of the leading local developers.

2 Building a Simple Level

P e il
Coneget SIKETLH ~ ELePHANT +1ouSE

15

16 Game Level Design

In This Chapter

B Level Design Building Blocks
® What About Story?

B Putting It All Together

® Summary

of what we call a level, then go through an example of how they are intercon-

In this chapter you will learn about the most basic and most critical components
nected and what part they play in defining the user experience.

LEVEL DESIGN BUILDING BLOCKS

Before we go too far into the details of level design, let’s consider what the basic el-
ements in a level are. The “building blocks” we need are these:

Concept

Environment to exist in

Beginning

Ending

Goal

Challenge to overcome between the player and the goal
Reward

Way of handling failure

As simple as it may seem, those are really the only essential items for a level. Sure,
it’s not going to cover what might be needed for a next-generation shooter or role-
playing game, but generally you won’t need new or different elements for big titles,
you’ll just need more of everything—more goals, more challenges, and frequently
more than one ending.

As an exercise, think of a game—it could be your favorite video game, board
game, card game, or puzzle. Generally, you will find all these elements in it. Try to
break the game you’re thinking of into its component parts. If you use a video or
computer game, watch for the different quantities and importance put in elements
for each of the levels.

Later in the book we’ll talk more about “high-level” concepts like difficulty and
flow, but for now these basic components are of the most interest to us, because if

Building a Simple Level 17

any are missing, the level will almost always be incomplete. You can have a great
level with great flow, but if there’s no challenge, it won’t be fun at all.

In Figure 2.1, we see a screen shot from a classic Tetris-style puzzle game. The
game is divided into rounds where the player has to interlock falling shapes to for-
mat a certain number of lines stretching from one side of the game screen to the
other. In this respect, we can measure a level in this game against our checklist of
basic requirements:

Concept: Find a place for the blocks or lose the level.
Environment: The active play area to the left of the game data.
Beginning: The player starts with an empty screen and a score of 0.

Ending: The level is over when the player either creates the correct number of
vertical lines (success) or the blocks pile up to the top of the screen (failure).

Goal: Create a number of lines that meet the target requirement for success.
Challenge: The speed of descent, type of blocks, and number of lines needed.

Reward: The player moves to the next level, or receives a brief animated
sequence.

Failure: The game ends and must be started from the beginning.

LINES LEFT

FIGURE 2.1 The level building blocks as seen in a
simple puzzle game.

18 Game Level Design

WHAT ABOUT STORY?

You might be thinking to yourself, “Shouldn’t a game, and therefore its levels, also
have a story?” Well, the simple answer is no—it’s not a fundamental requirement.
A story can enhance a level and give the players information about what they are ex-
pected to do, what they might need to avoid or seek out, and so on. However, many
types of games exist without a narrative element, and leave it to the players to cre-
ate a story if they really need one. Chess, for example, has elements of medieval war
and politics—castles and knights and bishops on a playing field eliminating each
other. However, the game can be played with colored stones, as with its ancient
cousin “Go.” The battlefield element simply enhances the experience, allowing the
player to fantasize on some level about being a general or monarch moving forces
into conflict. But the gameplay needs no such background elements to be fun.

Similarly, many levels from titles such as Tetris, Frequency, or Rayman have no
inherent story other than perhaps a thin veneer given at the beginning of the game
or in the manual. The gameplay is what drives games, and similarly, it is what drives
the stages and levels within them. Ideally, a level will to some degree allow the play-
érs to create a narrative as they play, even if it’s just a series of personal achievements.

Later in the book, we will look at how level designers can express narrative el-
ements or micro-stories in their maps through the use of audio and visual sugges-
tions, and letting the players fill in blanks with their own imaginations. A story does
not need to be an epic to be entertaining.

PUTTING IT ALL TOGETHER

Now that we have a manifest of things we need to include, let’s go ahead and cre-
ate a simple level to demonstrate how they all work together.

Concept

For example purposes, let’s say we’re making a game to be played on a portable
phone. The game is called Clownhunt and it involves the player controlling Crispy,
a clown desperately trying to escape a maniacal ringmaster whose low box-office re-
turns have sent him over the edge. The game is a puzzle game, and each level takes
up one screen, presenting the player with a challenge to overcome before moving to
the next screen, with each successive level being slightly harder than the one before.

The controls are simple: The player can move Crispy the Clown left and right,
and make him jump while moving. This allows Crispy to leap onto low obstacles
and jump to avoid small enemies that can pass underneath him. Crispy can fall
from any height without injury, has unlimited energy for jumping, and has no in-
ventory or weapons to keep track of, The game is as simple as can be.

Building a Simple Level 19

Environment

Clownhunt is set in a circus, so all the elements should be thematic if possible. Col-
orful backdrops and “cartoony” graphics should be present in the environment.
These become important as humorous elements to offset the grim theme of the
game—the player being pursued by a murderous ringmaster.

Technically, each level takes up the maximum space allowed by the screen’s
display. The environment consists of a static background image, a starting point for
the player, a visible exit he must reach, and whatever elements are available to help
him progress in the foreground. There is no on-screen information or heads-up
display (HUD) to interfere with the environment because the game doesn’t require
the player to keep track of lives, energy, or other game “metrics.”

For our demo level, the environment will be the Elephant House. The back-
ground of the level shows several dark cages, a concrete wall, and a single light hang-
ing from the ceiling, all of which are shown in the basic environment sketch in
Figure 2.2. The sounds of elephants trumpeting plays in the background along with
the game music and general effects as the player moves through the environment.

Coneg®T SKETLH — ELEPAANT +fousE

FIGURE 2.2 The basic level environment.

Clownhunt always begins with the player on the left edge of the screen, needing to
move to the right side of the screen to exit. The entrance can be at the top, in the

20

Goal

Game Level Design

middle or at the bottom of the screen, depending on the level. It is always repre-
sented as a doorway through which Crispy runs. For this level, we’ll start the player
at a plain wooden door next to the elephant cages at the bottom left corner of the
screen (Figure 2.3).

Coneg®T SBTLH — ELBPHANT HouE

FIGURE 2.3 The entrance added to our sketch.

We need the exit to be far enough away from the entrance to make sure the player
can’t reach it without overcoming some kind of challenge or obstacle. For this level,
we’re starting the player at the bottom left part of the level, so putting the exit high
up on the right (Figure 2.4) sets the goal for the player. We’ll also label it “Exit” in
the level itself to make sure the player knows that’s where he needs to g0 to move
to the next stage. The area around the door will detect if Crispy is touching it and
end the level successfully.

The goal of every level in Clownhunt is the same—reach the exit. The final level
might be a showdown with the Dante, the ringmaster, but for the purposes of this
chapter that doesn’t matter. The important part is making sure the player has a way
to reach the exit and finish the level. For our game, the goal is made clear by the
story—an enemy pursuing the player makes it essential that the player keep moving.
This is a narrative-driven goal, however. The Ringmaster will never actually appear

Building a Simple Level 21

Coneg@tT SKETLH ~ ELEPHANT +1ouSE

FIGURE 2.4 The level exit added to the map.

in the level or get Crispy, no matter how long he stands idle. The advantage of a goal
that can be applied to all levels is that there is no need to precede each stage with a
description of the objective, or keep track of different success metrics for each map
(such as enemies destroyed, coins collected, or whether a certain key has been picked

up.)

Challenge

This is the key to the player actually having fun in the level. We need to come up
with an obstacle to stop the player from simply reaching the exit, and provide a way
for him to overcome the challenge. We also need to make sure the challenge is the-
matic—that it doesn’t strike the player as out of place or goofy for the kind of game
he is playing. This is called dissonance, and you will constantly need to avoid this as
a level designer.

As this is a game set in a circus, having a puzzle involving a seesaw might not
seem too out of place, so let’s run with that idea.

The seesaw is a useful challenge for a number of reasons:

® We need a way for the player to gain height to reach the exit.

m It is immediately recognizable by most players.

m How it works is apparent just by looking at it, so we don’t need to explain to the
player how to use it.

22 Game Level Design

So let’s go ahead and put it on the floor of our level design sketch (Figure 2.5).
We can make the pivot point a large circus-looking barrel and the moving part a
plank so that it fits into the background.

CoNgRT SKETLH — ELEPHANT Houe

FIGURE 2.5 The challenge element added—a balance
puzzle using a seesaw.

Determining the Challenge Mechanics

Now that we have the puzzle, we need to add the mechanics that will allow the
player to interact with it. Usually, when we talk about a puzzle or challenge in a
level, we can break it down into different sorts of mechanics—a mechanic is sim-
ply the functionality behind each puzzle or game element. The mechanics behind a
door are simple for most games—activate a door and it will move a certain direc-
tion on one axis, usually its hinges, just as it does in real life. Players should have no
reason to believe a door would behave otherwise unless they were led to believe so
by prior knowledge, a prompt from a character, or a visua] clue. The best gameplay
mechanics are those that need no explanation, allowing the player to simply work
out how to interact with them from his own observations. This makes the players
feel clever and allows the designer to stay out of the picture while they play.

For our gameplay challenge, the mechanics should work like the player ex-
pects—a weight on one side of the seesaw will make that side go down and the other
rise. The greater the weight, the higher the opposite side will move.

Building a Simple Level 23

So how can the player use a seesaw to propel Crispy up to the exit platform?
Obviously, he’ll need something heavy to drop on the opposite side of the seesaw,
which will make his side move up and give him the height needed. There are sev-
eral ways we can introduce this weight to the player and allow him to interact with
it, a few of which are illustrated in Figure 2.6.

C -SAW
Rove WXTCH (v ﬁs‘ts ®
(T T SOMEMO) (TewsER PATFoRM) Feo PEL- R"me)

FIGURE 2.6 A suspended weight, a weight on a triggered
platform, and a weight already sitting on the seesaw.

In the example, only one option will work for us. The suspended weight would
work if we could shoot or throw something sharp at the rope to cut it, dropping the
anvil down onto the seesaw. However, the design of Clownhunt doesn’t allow the
player avatar to be able to do anything but move from side to side and jump. Like-
wise, the option of having the weight on a platform triggered remotely by a lever
won’t work either. Obviously, Crispy doesn’t have an “interact” action to use the
lever. We could allow the player to simply bump into the lever to drop the weight,
but then it would cause difficulties allowing the player to be on the low end of the
seesaw and trigger the weight at the same time.

Putting the weight on the seesaw seems the most advantageous. This way the
player needs to work out how to use the seesaw to throw the weight up and then use
the resulting impact to propel the avatar to the exit (Figure 2.7)

Fortunately, this mechanic needs little explanation. Gravity is a known concept
for players, and they can reasonably expect that if the weight goes up, it will also
come down. We don’t need to clue players into the puzzle ourselves—it’s all self-
explanatory.

24

Game Level Design

S SA PozzLe

FIGURE 2.7 Creating gameplay around the puzzle
element.

A relatively logical solution for the player right now is simply to jump on the
high part of the seesaw and wait as the opposite weight flies up and comes smash-
ing down. In real life, this might end up breaking the seesaw, or the weight may not
land where it started. However, this is an example of “game logic.” Game logic is
where the player can reasonably expect that certain situations or objects will be
more predictable than might be the case in real life.

In Andrew Rollings and Ernest Adams on Game Design,! the authors explain that
knowledge gained about the game from within the game itself, is called intrinsic
knowledge. Conversely, knowledge applied in the game but gained from another
source, usually real life, is called extrinsic knowledge. In the case of the seesaw, the
Player is using his extrinsic knowledge of how that object works in the real world to
tackle the problem facing him in this level.

In the case of the seesaw, most players will assume they can use it to get up to

1. Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on Game Design. Indi-
anapolis: New Riders, 2003.

Building a Simple\Level 25

we'll talk more about scripting in later chapters, but a very simple example of
level design scripting is creating simple rules for in-game objects to follow to react
to the player’s actions. Often, you or the game designer will give these rules to the
programmers to implement when they code the object. In other instances, you will
be able to implement rules like this yourself on a level object through some kind of
editing language.

An example of a rule we could set for the seesaw is this:

Multiply the distance the weight goes up by the number of feet the player charac-
ter falls before landing on the other end of the seesaw.

With this rule in place, the next questions is, What will the player jump from?
If we assume Crispy’s jump height is fairly low, then jumping onto the plank from
the ground isn’t ideal. We probably want to include a low platform for the player
to jump onto the seesaw from. We can put in a small stack of obstacles next to the
seesaw that the player can climb on top of and jump down from. At this stage, what
the obstacles are isn’t important, but it is critical that they are low enough for the
player to jump up onto them, and stacked high enough that they offer various
heights to jump from so our rule has some effect on the weight at the other end of
the seesaw. For thematic reasons, however, we can make it a stack of crates with the
words “Elephant Snacks” stamped on the sides, shown in Figure 2.8.

(onig@T SKETM — ELEPHANT HouE

FIGURE 2.8 Crates will allow the player to gain height for
his jump and propel the weight higher.

26

Game Level Design

The challenge is now complete—using simulated real-world reactions, a lever
in the form of a seesaw is weighted at one end. The player must work out that he
needs to climb a nearby stack of boxes to jump onto the other side of the lever, cat-
apulting the opposite weight up and sending him flying when it hits the seesaw
again. Simple, easy to understand from visual observation, and effective enough to
probably require more than one attempt by the player to get it right.

Reward

Failure

In this case, the main reward for completing the level is allowed to access the next
one. A secondary reward will be a short victory animation of Crispy giving the
player a thumbs-up before diving through the exit. For many players, the act of
completion and progression is the driving force for playing a game. This is a ten-

The last critical part of the design is what to do when the player fails the challenge,
or fails to complete the Jeve]. Luckily for us, all of this is handled inherently. We
don’t have a timer or any kind of over-arching challenge that might end the game
before the player manages to finish. We don’t have health, so falling from any kind
of height won’t end the Jeve]. There are no expendable resources or parts of the leve]
players can waste and put themselves into a no-win situation. Falling from the stack
or seesaw simply means the player has to get back on the crates and try jumping
onto it again. Simply put, there is no chance of failure in this level.

This does bring up an interesting point, however, and one that you should
keep in mind as long as you design experiences for other people: The more the play-
ers can blame you, the designer, for failure, the easjer it will be for them to simply
stop playing. Ifa player fails and can only blame himself, there is 4 greater incentive

SUMMARY

Although there may be many, many different types of game genres, almost all share
the same basic requirements for the individual levels that make up the game.
Knowing what these building blocks are s critical to knowing what makes a good

Building a Simple Level 27

level. In this chapter, we covered these foundation concepts and went through the
process of making a level that uses all of them for a virtual cell phone title. Some key
lessons illustrated in this chapter are the following:

m The more players can complete a challenge in a level by simply interacting with
it and observing the results, the better they will feel about overcoming it. If you
need to resort to prompts or special mechanics to allow players to complete
your puzzle, you will risk removing them from immersion of playing your
level.

® Sometimes simply finishing a level can be a reward—there doesn’t always need
to be fireworks or an exit guardian to defeat for the player to feel like he has
accomplished something.

® Trynot to let the player be in a position to blame you for his failure. If you give
players all the tools they need and don’t impede their abilities to learn from
mistakes, they will be much less frustrated with failure. Even better, eliminate
the need for failure at all when you can.

3 = Team Roles and the
Pipeline

29

30

Game Level Design

In This Chapter

Development Teams
Management

Design

Art

Programming

Audio

Other Development Roles

Team Setup

The Pipeline

The Unarguable Benefits of a Solid Pipeline
Pipeline and Technology

The Game Engine

The Game Editor

Pipeline as Defined by the Team

Summary

Interview with Hayden Wilkinson of KnowWonder Digital Mediaworks

of, game production. This chapter will explain in depth the major roles in a

game development team, as well as describe the pipeline, or the way in which a
game is put together. Although not all of it is critical to know when you are simply
making levels on your home computer or even when making levels professionally, the
more information you have about who does what, and when, the better a designer
you will be. A level is made up of a huge number of pieces, and a huge effort from a
large number of people. Let’s look at who all those people are and what they do.

Throughout the book, we will be referring to many different roles in, and stages

DEVELOPMENT TEAMS

You may be part of a commercial game development team, an amateur develop-
ment group (also called a modification or “mod” group, creating a new game based
on the engine of an existing title), or simply working at home on levels for fun. In
each case, you will experience different levels of responsibility and control over
your levels. Many variables affect who does what on a game team. Some companies
prefer a system that includes many managers and nondevelopment staff who help
keep the project running and make sure the needs of the creative team are met.
Other companies seek to keep management to a minimum with only a few leads

Team Roles and the Pipeline 31

and a single manager steering the ship. In some cases, level designers are required
to create all the art they will need for their own levels, in addition to designing and
building the actual environment. Some teams have level designers who design maps
in high detail on paper, and hand them over to others to build. In any case, there
are a few established “departments” that most game developers fit into. Let’s look
at the common roles that make up the modern game team.

MANAGEMENT

A team needs business-savvy people who can guide the project through the rough
waters of developing a game, especially if it is a game being made for clients with
very specific interests and requirements. Managers can be full-time, with little cre-
ative input into the game, but usually are somewhat involved with the look and feel
of the project. The smaller the team, the more “hats” everyone has to wear to get the
job done right.

Producers

Producers handle a role similar to a producer/director on a movie. They are the com-
munication link between production team members and the higher levels in the com-
pany—the executives, owners, and so on. Producers may give creative criticism about
the game, or even design parts of the game themselves. In very small teams, a producer
may also have the lead design role. Producers also handle the delivery of game content
to the client for review, creating “builds” or snapshots of the game in progress. In mid-
sized teams, the producer usually handles meeting team needs, scheduling, resources,
and making sure the demands of the client or publisher are met.

Project Managers and Assistant Producers

In a team where the producer is involved heavily in the design of the game, or
where there is simply too much work dealing with day-to-day problems, project
managers often take over the more mundane tasks, such as scheduling the team
members, motivating them based on performance and upcoming deadlines, and
handling individual requests (for new mice, graphics cards, etc.). When a team has
a project manager, he or she becomes the level of management that the team deals
with instead of the producer. Sometimes a project manager is called an assistant
producer, but the role is often exactly the same.

Creative Director

Unlike the other managers, creative directors are often shared between teams in
smaller companies, meaning that they serve as advisors, making suggestions and

32

Leads

Game Level Design

helping the creative staff realize the vision of the game, but often don’t create a lot
of art or design themselves. Creative directors on larger projects are still part of the
managerial staff, but are dedicated to the vision of a single game. Often they will
produce documents and structures to make sure all the art and design staff mem-
bers are working to create a unified “look and feel” to the game. Otherwise, with
several strong artists on staff, each level in the game or each character could be
rendered with a very different style, resulting in an unharmonious look or feel to
the game.

When games require several people of the same discipline, the management may
appoint leads, who are members of the staff that straddle the line between develop-
ers and managers. For instance, a lead programmer may still program parts of the
game, but will also guide the programming team, attend management meetings to
report the problems and concerns of the programming team to the producer, and
help schedule and provide his team with tasks. Leads are usually individuals with
experience or seniority who can be resources for members of their team when
problems or questions come up. Common lead positions in the game industry are
the following:

Lead designer

Lead programmer/engineer
Lead artist

Lead level designer

Audio lead

Lead writer

Lead tester

DESIGN

We discussed the designer’s role in Chapter 1, but only briefly. The ideas generally
come from the design department of a team. If game development were like a piece
of self-assembly furniture, the designers would be the instruction manual. The de-
signers conceptualize the game and create the vision of the game world. Designers
also provide the rules and systems that determine how that world works, what’s
possible to do and not to do within it, and the activities and encounters that the
player (or players) will face. There are several commonly found roles within the de-
sign group: game designers, level designers, and system designers.

Team Roles and the Pipeline 33

Game Designers

Before a game is designed, it is like a blank book. Game designers fill in the pages
of that book to make a document that describes the game to everyone else. Gener-
ally, designers are the folks who take a seed of an idea—it might be an original game
concept, or it might be a movie that is due to be released in a year—and grow that
idea into a set of rules, descriptions, and examples that will provide direction to the
entire team in what to create and how it will all work together. The main output of |
game designers is the design document, which is all the game’s data combined into |
one place. Nowadays, the concept of a single document is becoming outdated, and |
teams are putting the game’s design on internal Web sites (or intranets), which al-

lows team members to find what they need more quickly using Web browsers, and

edit or make comments on part of the design that they have questions about. Game

designers are planners, thinkers, and writers and often have little actual art or pro-

gramming game output.

Level Designers

These developers are special designers who, as we now know from Chapter 1, jug-
gle design, art, and programming skills to create the spaces where the player will ac-
tually be playing the game. We won’t go into too much detail here because most of
the book explains their role and responsibility on the team. It is important to note,
however, that “ level design” is possibly the most ill-defined game job today. Some
level designers are responsible only for the design of the gameplay, with artists tak-
ing on the task of building, decorating, and populating the map based on the de-
signer’s specific plans. A similar role, that of “scenario designer” is common in
games where all of the level’s art is prefabricated and designers are involved mostly
in creating and scripting the complex missions of the game, especially for strategy
titles like Empire Earth or Warcraft 3. Sometimes scenario designer refers to indi-
viduals who do everything—design, plan, build, light, populate, decorate, and pol-
ish the map all by themselves. Level designers can work under either a lead designer
or a lead level designer if the team is large enough to need one.

Systems Designers

More recently, games have become complex enough that it takes a specialized de-
signer to create the individual systems, rules, or scenarios of the game, but doesn’t
actually build any of the game content. For instance, a game team may have a
system designer handle the way combat works in a fighting game. These designers
supplement the lead designer’s responsibility to work out the mechanics of the
game and document them for the rest of the team. As games become more com-
plicated and the ability for one person to adequately keep track of the design of a

34

ART

Game Level Design

game’s internal structure becomes more limited, systems” designers will become
more common.

The art team is responsible for everything the player sees in a game, literally. From
the install menu, to the final credits, as long as it happens on screen, the art team
helped create it. This covers a huge number of skills, roles, and responsibilities, as
you might imagine. Art teams are broken down into several specializations.

Modelers

As games increasingly use more complex 3D graphics, the need for people to create
the myriad of people and things in the game world—to model them as 3D objects—
also increases. Modelers are masters of turning out the props and characters that you
will use in your maps. Modelers work either from reference, concept art, or purely
from their imaginations to create 3D meshes for the game, often hundreds of them.
Commonly, they will use commercial modeling programs (such as Alias|Wavefront
Maya) to create their work, which is then brought into the game editor for place-
ment in the levels.

Animators

Animators take the characters, and sometimes objects, that modelers make and
give them life and motion. For instance, in most games where players can see their
characters, the animator needs to create a response for each of the character’s avail-
able actions. When the player presses the j ump button, the avatar plays an anima-
tion of jumping into the air—an animator created this movement. Similarly, for
every action in the game, the animator makes a unique animation. Sometimes a
company may choose to use live motion capture, or mo-cap, where real actors dress
in special suits that translate their movements to computers as animation data.
This data still needs an artist to tune and edit the data before it can be used in the
game, however. Motion capture is popular because it provides many of the subtle
nuances of human movement that are hard to replicate manually. However, mo-
tion capture costs a great deal more money than a traditional computer animator
does.

It’s not just living things that need motion. Animators often create animations
for game objects that need movement—doors that open, or trees that sway, for in-
stance. As computer technology improves, many of what we have traditionally used
as static objects in levels will begin to be animated all the time—trees, papers, cur-
tains, grass, etc.

Team Roles and the Pipeline 35

Texture Artists

Texture artists create the flat images (which we’ll discuss more in Chapter 10) and
effects, called textures or materials, that go on the surfaces of objects in the game.
Very often small teams don’t have unique texture artists—the modeler or anima-
tor handles the texturing of an object or character. For larger teams where the num-
ber of textures to be created is large enough, one or more texture artists are brought
in to help ease the workload for the modelers.

These artists use 2D image editing programs such as Adobe Photoshop to cre-
ate original art and use digital photos for the game. They also need to be well versed
in the 3D applications so they can actually map the textures onto models properly,
and test their work in three dimensions.

Texture artists also make the materials that level designers apply to the levels.
In this case, the designers are responsible for actually applying the materials onto
the level surfaces, and a great deal of communication is needed between a level de-
signer and a texture artist to make sure exactly the right textures are made to match
the needs of the level.

Special Effects Artists

Another specialized role, effects artists are all-round skilled artists who create the
special effects (SFX) needed for games. Many special effects that cannot be created
by simple animation use what are called particle effects in levels. This type of effect
uses, as you might guess, small objects called particles that can be generated when
needed, and destroyed after certain conditions are met. A texture or image is used
for each object for its appearance in the world. Almost any kind of effect can be cre-
ated with particles, and they are used extensively in games for things like billowing
smoke, flickering flames, muzzle flashes from guns, waterfalls, sparks, snow and
rain, falling leaves, or blood spraying from a hit location.

Many game engines feature very complicated, scriptable particle systems that
allow the users to create complex and realistic effects. For this reason, effects artists
tend to spend part of their time creating art and images for the particles, and the
rest of their time fiddling with parameters and adjusting the properties of the effect.

Interface Artists

All games have interfaces—the layer between you and the actual game. When you
start a game there is always a start screen with options that allow you to begin a new
game, load an old one, choose from a selection of performance options, and so on.
When you actually play the game, there are elements that aren’t part of the game
world that show you specific information—we call this the heads-up display
(HUD), as coined by the U.S. Air Force for the kind of information overlay that
fighter pilots see superimposed on their view through the cockpit canopy. In games,

36

Game Level Design

the HUD usually tells the player how much health he has left, shows where he is on
a small map, or displays remaining ammunition or turns that are left.

Interface artists create flat images like texture artists do, though they may often
work in 3D modeling programs to create those images. Interface design is a very
skilled field that uses the science of “information display” to determine what the
most critical information that the player needs to know is, and how to display it in
a way that is easy to see, yet won’t get in the way of playing the game. Many games
strive to remove the HUD completely, like Lionhead’s Black and White; however,
very few games can get away with no on-screen information other than what is
shown in the level. Even a game without a HUD will still need interface art for
menus, pause screens, in-game systems such as inventory and character statistics,
and so forth. The work of interface artists and level designers tends to be indepen-
dent and there isn’t a great need for extensive communication unless each level will
feature a unique style of interface art.

Concept Artists

Concept artists work during the early part of the game, mainly in pre-production
where they help to visualize the look of the game—its locations, characters, objects,
interface style, and so forth. Concept art is loosely done, and involves coming up
with lots of ideas at first, choosing the best direction from many and refining the re-
sult in waves of concept drawings and sketches. It used to be that conceptual art was
done via traditional means—opencil, pen and ink, or marker compositions. More
recently, with the ease of programs such as Photoshop and Painter that can repli-
cate all manner of artistic styles and media, concept artists often work electroni-
cally. This helps to distribute, print, adjust, and even place concept art in a game
environment for evaluation quickly.

Occasionally, a concept artist will remain with a game team to help realize im-
portant visuals and game encounters, but it’s rare. Most concept artists finish their
work as production begins in earnest, creating a set of images and reference art for
artists and level designers to work from.

PROGRAMMING

Programmers are the folks who make everything work on a fundamental level. Not
only do programmers create the technology on which the game runs—the engine,
the renderer, the drivers that make the hardware work—they also create the tools
that other developers use to create the content for the game, as well as program-
ming individual parts of the game, from the behavior of a squirrel to the entire
artificial intelligence (AI) system controlling whole enemy fleets. Let’s look at the
major roles in a game-programming department.

Team Roles and the Pipeline 37

Gameplay Programmers

This type of programmer works directly with designers and level designers to pro-
vide functionality and behavioral elements for use in the game. A programmer gen- |
erally handles anything that the player needs to interact with or sees making |
decisions on its own. Although the visuals of an enemy archer may be handled by a

modeler to make the character mesh and by an animator to give him animations for

moving, readying a bow, or firing at the player, a programmer puts these things to-

gether and adds the intelligence behind the NPC that causes it to move, target the

fire, die when wounded enough, or seek help when outnumbered. As a level de-

signer, when you need a specific behavior for an existing game actor, or when you

need a new actor entirely for an encounter or situation you are building in a level,

you will work with most closely with a gameplay programmer.

Tools Programmers

All the tools you use when developing a level were created and coded by programmers
and engineers. In game development, the quality of a project is often influenced heav-
ily by the quality of that game’s tools. Animators need tools to adjust and import their
work into the game. Designers need tools to adjust the properties of the game, see
specific data, and make tuning adjustments to all manner of game elements. For level
designers, the most important tool is the editor, or the tools that allow designers to
build, decorate, script, and test their levels. Without good tools to do all of these
things efficiently and comprehensively, developers can’t work at their best.

Tools programmers, then, are responsible for creating, updating, and fixing the
game engine and tools used to interface with it. They may be split between game
programming and working on the engine, but these programmers usually work
through a game’s production to make sure the team gets what it needs, as needs
arise, and that new features are implemented based on the wishes of the client or
team leads. Tools programmers tend to work between projects too, updating and
refining the tools so that by the time a new game ramps up to production, the en-
gine has been improved a great deal and is able to use advances in game technology,
keeping current with the engines of competing titles.

Graphics Programmers

Modern games need eye-candy, impressive visuals that make the player want to buy
the title just from seeing the screenshots on the back of the box. Some games are so
visually impressive that dedicated “hard-core gamers” will actually purchase new
computer hardware or game consoles just to play them. Thus, programmers who
are able to get as much juice as possible from a game’s technology and the hardware
it will be running on, to make it as visually appealing and graphically unique as pos-
sible, are crucial.

38 Game Level Design

Graphics programmers work somewhat in conjunction with level designers,
providing the means for rendering visual aspects of a level such as textures and ma-
terials, lights and special effects such as light blooms that make the screen fuzzy
around bright lights, or dynamic shadows that move around and react to the lights
in a level. In general, however, the major work of graphics programmers is benefi-
cial to the art department and is filtered to level designers through tools that allow
them to use the graphics techniques properly.

Graphics programmers are also responsible to some degree for how a game
performs, balancing the need for eye-candy with the need to run smoothly on most
computers and not slow down from trying to process too many visual effects.

AUDIO

The audio department is responsible for the sounds and music in a game, and by
extension, all the aural effects in a level. Never underestimate the importance of
audio in a game level; often it is one of the most critical components of atmosphere
and emotion in a game map. Two major game audio roles are commonly found,
sound designers and musical composers.

Sound Designers

Much like texture artists, who use their talents to modify real-life images as well as cre-
ate materials from scratch, sound designers are responsible for creating audio tex-
ture—adding authenticity and complexity to the level through the use of prerecorded
or synthesized sounds as well as Foley—creating sound effects in a special studio from
scratch (using appropriate sounding objects and surfaces) as is done for film.

Sound designers work from the documents that the design team creates. Your
level documentation will be reviewed by the audio staff for suggestions and clues to
what sort of sound effects or music is needed. Although you may actually specify ef-
fects that you need, skilled sound designers will generally extrapolate information
from your ideas and create sounds that suit the theme, setting, and practical require-
ments of your map. For instance, if your real-time strategy level takes place in an arc-
tic environment, a sound designer may decide to come up with special movement
sounds for all the vehicles to play when they move over snow and over ice. The muf-
fling effect of a heavy snowfall may inspire them to alter weapon firing sound effects
a little to make them more realistic. Ambient sounds might simply be arctic winds
blowing ice crystals across the plains, or the occasional creak and crack of glacial
movement. Sound designers play a critical part in creating game environments and
level designers should expect to interact with them a great deal during production.

Team Roles and the Pipeline 39

Composers

Musical compositions in games—full thematic scores, momentary “stabs” of heart-
pounding music, and simple background ambient music—are all put together by
musical composers. The creation of game music differs less from that of cinematic
composition than one might think. Game music can be anything from completely
synthesized, computer-generated techno music to sweeping, symphonic back-
ground music played by full orchestras. Many games pursue traditional music over
computer-aided instruments when trying to capture a cinematic or classical feeling.

Level designers often get music as an asset that they can use in the map with
varying amounts of direction from the audio department. Sometimes a piece of
music can be used whenever and wherever it feels suitable, but at other times (or on
other projects) much of the music is written especially for specific parts of each
level, like a movie score. Either way, having a fully-fledged musical composer on the
team is a great asset and customized music for a level can add an amazing amount
of depth and atmosphere.

OTHER DEVELOPMENT ROLES

Other common roles will also intersect with level design but aren’t attached to par-
ticular departments.

Cut-Scene Artists

Cut-scenes, as we will talk about much later in the book, are simply miniature
movies created within the game itself, to relate critical story information to the
player, to force him to watch a situation unfold, or to give clues about an upcoming
challenge.

The people who make these interludes are generally a subset of level designers,
in that they work within levels as the backgrounds or sets on which the cut-scenes
are “filmed.” A cutscene artist does this by using special markers for game charac-
ters to move to, virtual cameras to switch views at key moments, and special ani-
mations to let the characters “act” appropriately. This is often done through a
special tool in the editor, or through a scripting language that allows them com-
mand of the level environment and the characters in it.

Level designers and cut-scene artists work in conjunction with each other to
create high-end interactive, and non-interactive, experience in the level.

Writers

Game writers create the narrative thread of the title, as well as handle incidental di-
alog (conversations between two thieves that a player might overhear, for example),

40 Game Level Design

writing voice-overs for mission briefings, communications and mission failures,
and all other related in-game writing. In addition, game writers often create back-
ground information for the development team, including character descriptions
and histories, location information, and extra detail that helps level designers cre-
ate more authentic or appropriate environments and encounters.

Writers work closely with level designers and cut-scene artists to make sure the
storyline and narrative are consistent, that the player will be able to follow along
with the plot and identify with the characters, and that in general the game upholds
a high standard of writing quality. A team without a writer will usually fall back to
a producer or lead designer filling in and creating written content, which is not al-
ways a desirable situation. The art of game writing is still evolving because games
have mostly not developed full-scale cinematic storylines and in-depth characteri-
zations. As the industry grows, however, many writers are making the transition
from film writing to producing game scripts, which are very different from each
other in how they are implemented. Film scripts are the end-all-be-all of the movie
around which production revolves. In games, story is secondary to gameplay and,
as such, the game writer needs to make constant adjustments and refinements
based on what goes in, what gets cut, and what written situations are discovered to
be too expensive to produce within the game engine.

Testers

Once a game starts to shape up and playable levels are being made, the testing team
is brought on to identify “bugs”—problems in the game that range from graphical
glitches like missing textures, to high priority “show stopper” bugs that cause the
game to crash completely, or allow the player to get stuck somewhere and not
progress, effectively killing his ability to progress.

Testers are dedicated souls who not only play the levels as they get made, they
try their hardest to break them. In this way, after playing through a level tens, some-
times hundreds of times, the testing team identifies as many problems as it can, and
the team can release a bug-free game to the public.

In very small teams, the testers may interact with the level designer directly. In
most teams, however, testers will submit bug reports to a special database that the
level designers access to find problems that relate to levels they are working on. In
this way, the relationship between tester and designer is very close, but little direct
contact is made between the two.

TEAM SETUP

Now that we have gone through all of the common members of the modern game de-
velopment team, let’s look at how these teams are set up to function at peak efficiency.

Team Roles and the Pipeline 41

Every team is unique, but we can use the categories of small, medium, and large
teams to show the kind of scale differences that can be found in the industry. The
numbers used as examples of how many people each sized team has are current at the
time this book is written; however, as time goes on these sizes are bound to increase
alongside the expectations of the players and the capacity of the available technology.

Small Teams

Small development teams of one to twelve need members to “wear multiple hats”
by performing more than one duty on the project. For instance, the producer may
also be the designer—one person handling both scheduling the team members and
running the logistical side of things while also creating the design document and
working with the team to oversee the creative vision. In small teams, communica-
tion between various members is easier and fewer large-scale reviews or informa-
tional sessions are needed. Small teams can change direction, respond to problems,
and rearrange the internal structure of the team more quickly if necessary. They
tend not to have leads, and management falls on only a few key people. The struc-
ture of a more compact game team generally results in a “flatter” command struc-
ture (Figure 3.1)—if one really exists at all—but the scope and size of the games it
can reasonably tackle are also smaller. Independent games tend to go for a reduced
development group because of smaller budgets and no real publisher support.
Handheld games, Web games, cell phone games, and games for younger gamers all
steer toward fewer team members. Contractors often play a big part in filling out
the ranks of small teams, as well as part-time developers who work on elements of
the game for only a portion of the production process. In small teams, levels are
often created by whoever has the time or inclination, and level designers commonly
must produce large numbers of maps and create the assets for them, too.

Project Lead

Programming

FIGURE 3.1 An example of a small development team.

Mid-Sized Teams

The mainstay of game production is the mid-sized team. Usually, these teams are large
enough that each person on a team has a single primary task, and regularly scheduled

42 Game Level Design

communication makes sure everyone knows what the others are doing. Medium-sized
teams tend to have small departments relating to the major areas of development—
programming, art, design, audio, and management—with a lead for each (Figure 3.2).
Given enough time and money, mid-sized teams can produce anything from a com-
plex Web game to a “triple-A” chart-busting game for console or PC. Mid-sized teams
also have a management layer that does not create content for the game but, rather,
oversees the production process and deals with the client. Independent games with
mid-sized teams generally already have a contract in place with a publishing client and
so can afford to pay the large overhead that comes with substantially more developers
working at one time. Sometimes contractors and part-time members are drafted in to
fill out the numbers but mid-sized teams range in size from about 12 to 35 full-time
employees and are the average size for most large-audience PC and console games.
Level designers in medium-sized teams are often responsible for a handful of levels
each, but are supported by the other departments for asset creation.

Producer

Project Manager

Art Lead Design Lead

Programmer

Programmer

FIGURE 3.2 An example of a mid-sized team structure.

Large Teams

In rare cases, games cover a large enough scope, size, or expectation that a large
team of 35 or more is needed to meet the requirements of the client, or the con-
sumers. Large teams require the most specialization from the staff (this sized team

Team Roles and the Pipeline

43

is often where you will find SFX artists, assistant producers, and systems designers,
for example), often grouping them into smaller teams within the main production
group to handle specific tasks.

Large teams require a great deal of management to organize and oversee the de-
velopers (Figure 3.3). Large teams are frequently employed in the production of high-

Art Lead

Modeler

Modeler

Texturer

Animator

Animator

Effects
Artist

FIGURE 3.3 An example of a large development team setup.

A

Test Lead I

Producer

Assistant

Producer

Project Manager

Design Lead

Designer

Designer

Tester

Programming
Lead

Engine
Programmer

Engine
Programmer

Game
Programmer

Game
Programmer

Graphics
Programmer

Tester

Audio Lead

Audio
Designer

Audio
Designer

Composer

Tester

44 Game Level Design

budget flagship games for well-funded studios, such as Half Life 2 or Prince of Persia or
for massively multiplayer (MMP) titles such as EverQuest, which need not only a de-
velopment team but also a group employed to make new content continuously, help
players in the game, and create events and in-game encounters (called the “live team”).

Level designers in large teams may only be responsible for one or two levels, but
can expect a huge amount of work and documentation in making them. Constant
communication is needed to keep everyone on the same page, and generally a level
designer enjoys dedicated support from one or more artists and programmers to
make sure all the content and functionality for the level are delivered.

THE PIPELINE

As we can see, a game level is really made up of many parts, all coming from differ-
ent people and departments within the studio, much like a modern factory line
(Figure 3.4). When the time comes to plan for how all the levels in your game are
to be built, a process has to be worked out to make sure the production goes
smoothly and everyone is able to work without waiting for someone else to finish
first. This is called the pipeline and it helps define

® Which team member is responsible for doing what tasks
The order in which those tasks must be done
How much time those tasks will take

FIGURE 3.4 The level designer is the end of the factory production line.

Team Roles and the Pipeline 45

To use the analogy of the factory floor again, there is no set production pipeline
that works for everyone. A factory that makes cars will create and assemble parts in
a different manner than does a factory making pies. In the same way, in the game
industry each studio, each team, each genre, and each individual title will have cer-
tain demands for the production process. Conversely, when a company finds a way
of making games that seems to work well in general, each following project works
from that standard pipeline. Further modifications are then made based on team
size, resources, engine, and platform for a particular project.

As a level designer, or a lead level designer, you may be called on to advise in
how your game is made; specifically, you may be asked for input on the role of the
level designer on your project, the amount of support needed, and the distribution
of levels among the support teams. When in the process of building a level does the
cinematic team get to work on it? When does the sound engineer get the map to see
what effects he needs to make? All these questions need to be evaluated based on
project resources and limitations.

THE UNARGUABLE BENEFITS OF A SOLID PIPELINE

With so many decisions being made, and very often not enough communication
between developers, it is essential that the team understand the “big picture” of how
everything is meant to come together and, more specifically, that each team mem-
ber is clear on his role on the team. Given that most games are made with strict
deadlines and release dates, the biggest enemy of the level designer is time. The big-
ger and more detailed a game is, whether it be a platform game, a shooter, or a sim-
ulation, the more help the designers will need to create the levels, and having solid
pipeline allows everyone to work at the same time.

SIDEBAR

Megan’s studio has set up its pipeline so that the level designer is responsible for
creating the basic level, as well as adding the models and textures created by the
art team as soon as they become available. During the production of the level,
there is constant dialogue between Megan and her support artists about what
is needed, allowing them all to work in parallel. By the time the basic geometry
in the level is complete, she has all the models and textures that she needs to fin-
ish it. While she is adding models, the audio designers and game programmers
are working on more specific content for her to add, and the artists move on to
her next map. The pipeline determines who works on what level so the pro-
duction schedule is well oiled and allows everyone to work at once.

46

Game Level Design

If you are building a level, you rely on the support of others. If the model or
code you need isn’t done, you may be forced to sit and wait. Likewise, if an artist is
sitting twiddling his thumbs because you have the map that he needs to texture,
you're wasting his time. It’s as simple as that, really. The worst thing for a producer
or project manager is if employees cannot get their work done for any length of
time, and are stuck idling as the next team deadline looms. This is the sort of thing
most producers have nightmares about.

SIDEBAR

At Greg’s company, the procedure is for artists to place their textures and
models themselves, rather than have the level designer do it. This allows the
artists to do it right the first time, but unfortunately requires that whoever is
changing the level have it open on their computer, preventing anyone else
from working on it. This wouldn’t be a problem, except that level designers
are scheduled to work on their maps until they have been finalized and re-
viewed by the leads before moving to the next level. Greg builds the level for
a few days, and then has to pass it off to the texture artist who spends several
days applying the materials he has made, and then gives it to the modeler so
she can place her decorations. During this time, Greg has little to do—the
next level hasn’t been finalized and he is unable to access his current map for
days at a time. '

The level pipeline should become a solution to a puzzle. It breaks down all the
elements and interdependencies of a game’s levels and organizes them over time so
everyone on the team can work in parallel as much as possible.

PIPELINE AND TECHNOLOGY

The technology used to make a game imposes the heavy pipeline demands—a com-
pany can often add more people or resources to a project in need, but an engine
cannot be changed halfway through a project without serious repercussions. Some
game technology will require more artists to create final levels, some will require a
greater number of programmers, or several different types of programming talent
to support the designers. Some games need fewer designers, for instance, a flight
simulator where artists do most of the environment based on real-world data.

Team Roles and the Pipeline 47

THE GAME ENGINE

The engine is what literally drives the game and allows the content to exist in a form
that the player can interact with. Programmers and engineers put together the en-
gine to work on the target platform(s) and provide the functionality that allows
artists, designers, sound engineers, and other creative developers to add their work
to the game. Game engines are often composed of the renderer, which is the main
code that actually displays the visuals of the game, and the interpreter, which takes
all the lines of code created by the game programmers and uses them to run all of
the game’s systems and behaviors.

THE GAME EDITOR

The editor is the tool that nonprogrammers use to either create content for the
game or to import it into the game from other programs. Some editors are very
basic, allowing no real preview of how a level will look or play, requiring a level de-
signer to compile or build the map (compressing all the level information into a for-
mat that the engine can run and display in the game) frequently to see the effect of
changes or additions to the environment.

On the other end of the spectrum, some editors are fully functional programs
that offer features comparable to high-end 3D modeling and programming appli-
cations. UnrealEd is one such editor, and we will be reviewing it in more detail later
in this book. Some game editors allow level designers a great deal of control over
their maps, from scripting Al to fine-tuning the visuals of the map in real time to
anticipating technical problems and either fixing them or notifying the designer
when the level is built.

As one might imagine, the kind of engine and editor used will very much affect
the level pipeline used by a team.

SIDEBAR

Say your team uses an engine that features a very robust scripting language
that allows the designers to create almost all the gameplay they require with-
out needing programming support. It might be decided to allow the level de-
signers to create much of the script for their level, reducing the needs for
gameplay programmers, but increasing the time needed for one designer to
complete a map. Most of the programmers would then be free to move onto
another project once the designers are comfortable using the existing code
and scripting tools to complete their levels.

48 Game Level Design

The sidebar is really just a simple example of how a game’s tools and technol-
ogy can drive the production process. However, many other factors will affect how
your game’s environments are made. The genre, the platform, the specific features
of the title will all call for different processes and different pipeline components.

PIPELINE AS DEFINED BY THE TEAM

Although the tools you use to make the levels play an important role in planning, an-
other important factor is the designers themselves. The individual skills and abilities
of each designer play an important part in defining the production process. If the
level design team in the sidebar example was mostly from an art background, hav-
ing excellent scripting tools may not make a big difference. On the other hand, in-
stead of needing less programming support, they might need fewer artists if they can
make most of the assets they need themselves. It won’t affect the time in which a level
is made, but it may end up affecting the quality, or user experience. The pipeline
should reflect, and respect, the various talent levels, technical leanings, and training
level of the level designers as well as the other members involved in development.

SUMMARY

In this chapter, we discussed all the different types of people a level designer will
need to interact with when making a game. We also learned that game teams come
in different sizes, having more complex hierarchies and spreading responsibilities as
teams get larger.

The concept of the level pipeline was discussed, including how it creates a
smooth production process and allows level designers to work in harmony with
other development departments without wasting time or facing downtime while
waiting to get back into a level.

INTERVIEW WiTH HAYDEN WiLKINSON oF KNowWONDER DiGITAL MEDIAWORKS

Hayden, you had been making maps long before you became a professional level
designer. What attracted you to making levels, and why is it something you felt
you wanted to do for a living?

Team Roles and the Pipeline 49

True, I had been making levels for about four years previous to me becoming
a professional level designer. I think what attracted me most to level design
was the opportunity to be creative. With level design you have the chance to
project your vision for the game in many different ways. For example, when I
began constructing levels it was up to me to design the layout and the experi-
ences the player would encounter; beyond that I would be responsible for the
environment, the lighting, placement of sound effects, enemy placement, and
yes, even the optimization. With so many different avenues available for me
to show my creative side, I just put it in my mind that this was the job for me.

How hard was the transition from making maps on your own time, for fun, to
making levels under the pressures of development—deadlines, bug fixes, client
changes, and everything that goes with making games?

I don’t want to say it was really hard to make the transition, but there is defi-
nitely a learning curve to contend with. For me, I felt like such a “new guy” in
the business that I kicked my creativity into high gear to help make up for
being so new to the development process. Sometimes this would come back
to bite me, in that there were times when I would get a little too overconfident
in what I was creating and would get a visit from the producer letting me
know that there was not enough extra art or programming time needed for
such an idea. Someone new to game development needs to keep in mind that
a professional project costs money to make and that there are deadlines to
keep, for the team to get paid.

As for client changes, it’s just a fact of game development. Unless you end
up working with a studio that supports itself without the help of a publisher,
be prepared to make changes to your work on occasion. It’s because so many
eyes look at your levels, so many people with all of their individual ideas of
what would make your hard work even better; I had a bit of a time adjusting
to this. You just have to remind yourself you’re working with a team now.

For me, fixing bugs is probably the most grueling part of the production
cycle a level designer faces. You spend maybe 85% of the time designing,
building, and putting on the finishing touches to your creations only to be
faced with an inbox full of imperfection, imperfection that must be fixed be-
fore the product can make it to the game store shelf. When I was making lev-
els in my basement for fun, I would have never caught most of these bugs,
they were simply put off onto the poor guy that downloaded my levels.
QA/Testers, the guys who send me all the comments on how I overlooked a
collision detection problem or an out of place texture, are truly important to
the development process.

_)

Game Level Design

To sum it up, the transition from making “for fun” levels to “profes-
sional” levels requires you to understand that this is a team effort and that its
going to take a lot of devotion and the ability, on your part, to accept criti-
cism. However, the light at the end of the tunnel is seeing your work enjoyed
by the people who play it.

When creating a level, what are your priorities? What elements do you begin with
and how do you go from concept to design, and from design to finished map?

I'have what I think is a simple set of priorities when creating a level.

First, I think it’s important for me to understand what the designer wants
from the level, and it’s my job to maintain that vision. In maintaining that vi-
sion, one needs to know his or her limitations, those limitations being the
time frame allowed to complete the level, how far can one can push the tech-
nology given to create the level, and how much room is allowed for deviation
from the designer’s original idea.

Second, I want the level to be unique. When the player enters a level, es-
pecially one set far into the game, it needs to be cohesive with the rest of the
levels but at the same time it needs to stand out from the rest. I like to try to
give the player something distinctive to remember in each level, whether it’s
the lighting/mood, the puzzles, or even the architecture.

My last and most important priority . . . Make it fun! This is, after all, the
one thing that keeps players glued to the screen. Now, it is up to the designers
and writers to create a great storyline and characters, but the level designer is
the one who builds on all of that. T help create the game mechanics needed to
make a level fun and challenging, the unique environments for exploring and
setting the pace so the player can enjoy the all the game experiences one at a
time with out feeling overloaded.

Going from design to the finished map can be somewhat complicated and
riddled with many different steps. Design itself is disorganized, so it’s up to us
to organize all the different elements of the game in to one big ball of fun.
Once I know what my priorities are, I like to go over all the concept art avail-
able to me at the time. After I have a good understanding of the environment
and game mechanics that should be in the final version of the level, I start to
work out a basic layout on paper and begin to bring this in to the editor I use
to create game worlds. I like to work on one area at a time; I work out the
geometry, the lighting, and lay down temporary gameplay elements; typically,
I end up revisiting these areas to fine-tune or polish the level. In professional
game design, at some point, usually before I am finished with the fine-tuning,

ﬁ

Team Roles and the Pipeline 51

the level goes off to the QA department for testing. When this happens I end
up spending a lot of my time juggling high priority bugs and final level polish.

Often the best lessons are those hardest to learn. What sort of misconceptions did
you have about level design before you joined a game studio? What are the hard-
est lessons about designing levels that you have learned in your history of making
interactive environments?

For me, coming from the Unreal community, where the level building tools
were so easy to learn, I had the idea that T would be given a design and I
would create the level, put my own spin on it and be responsible for the whole
level. In reality, you have to work with a team. Now all I do is focus on the
gameplay, general look and feel of the level, and optimization. Before now, I
was doing everything myself.

The hardest lessons I've learned over my years in making game environ-
ments are mostly related to performance. I can’t count how many hours I've
put into levels only to find out that it’s not running optimally on “normal”
machines (normal being what most people own). Many times I would go
overboard with trying to make the environment so unique, so detailed that I
was only making it hard for the player to enjoy it. Thereis a balance you have
to find in creating levels: it needs to be fun and look great but it also needs to
be playable on different machines. It took a little while and a lot of times I had
to give up what I thought worked great for the environment, but in the end,
it’s better for the player and your game.

What are the most important elements for a good level? What are the encounters
or experiences you try to include in your work?

Simply put, the most important elements to me are gameplay, storyline (not
for all games), atmosphere, and cohesiveness.

Some recent games have been made that just live off of their names; these
games start out with characters that you can interact with and they help to build
a story line, tension, and the urge to see what happens next. After you play the
game for a while, you begin to notice that the game slips off into a lull, and the
gameplay becomes stale and predictable. I would like to see more games that in-
troduce new characters and game mechanics at an easy-to-swallow pace, while
allowing me the time to experiment with new weapons or powers.

While gameplay is the most important element of level design, to me, at-
mosphere runs a close second. This is easily my favorite part of making levels.
I enjoy expanding on the designer’s vision by creating worlds that reach out
and grab the player and give them the chance to escape reality. I try to include

—>

52

Game Level Design

unforgettable areas for the player to explore; this somewhat helps the player
to know where he has, and has not yet, explored in the level.

I've seen a lot of games that seem to enjoy thrusting the player off into
some entirely new sequence of gameplay or into an environment that seems
foreign compared to the previous levels of the game. I think the reason this
happens is because the level designer does not have a clear understanding of
what is needed with the level or it could also be due to the designer’s vision
not being consistent with the rest of the story/game. In either case, this could
hurt a game, and it’s the reason why I always try to understand what the level
needs by collaborating with others on the team, such as the lead designer and
art lead.

Who are the people you most look to for inspiration, both in the field of level de-
sign and beyond, when working on a project?

Right now in the field of level design, I would have to say that the level de-
signers at Id, Ion Storm, Epic, and what was once Looking Glass Studios in-
spire me the most. Looking Glass made 1998 a good year for games by
creating Thief, the father of all stealth games. Companies like Epic continue to
set the bar high in architecture, lighting, and effects, not to mention an easy-
to-use editor and a huge community of fans willing to make mods. I can
always turn to these guys for inspiration.

Beyond level design but still in the realm of designing games, I like people
like Yoshiki Okamoto (designer of Time Pilot, Gyruss, and 1942). He had a
smooth, if not seamless way of adjusting the level of difficulty while at the same
time keeping the game consistent and fun to play. These games that came from
those classic designers are what helped build the foundation for today’s games.

Hayden, what advice can you give to the mappers and mod-makers out there who
are thinking about a job in level design?

From a professional standpoint, I would have to say that creating levels has
been a lot of fun for me and has taught me a lot about game development,
but ... be prepared to work hard and implement ideas you might disagree
with, as well as having some of your own ideas shot down. Understand you’re
going to be working as part of the team; you’re not a lone wolf anymore. Or-
ganization comes in handy when you’re working on multiple levels and hav-
ing the right communication skills is the most important advice I can give.
From an old community mapper/mod-maker view, tenacity is the answer
to landing a job in the industry. Keep working away at your levels; learn all the
tools needed to be a well-rounded level designer. If you can make levels really

—>

Team Roles and the Pipeline 53

well in Max or in Unreal, try to expand your knowledge to something like
Maya or maybe even brush up on your Photoshop skills. I don’t think you can
ever know too much about your craft.

Promote yourself . . . network, if you can, with others in the industry.
Make sure you have a clean and easy-to-navigate Web page with links to your
personal work and resume. Release levels to the public and encourage criticism
of your work; it will help you out more than you know. I also hear a lot from
others that I work with that a good level designer is up-to-date on things like
current events, technology, news, entertainment, literature; all these things
feed your creative mind.

Basic Level Design Theory

Game Level Design

In This Chapter

What Makes the Level Fun

Player Ergonomics—No Learning by Death

Level Flow—Keep the Player Moving

Rhythm—Create a Roller Coaster Rather Than a Highway
Difficulty—Let The Player Win, Not the Designer

Wow Factor—The Water Cooler Moments
Hooks—Setting Your Level Apart

Summary

Interview with Dream Smith of Griptonite Games

dation for most levels. These concepts are the basic theory of what it takes to

Create an enjoyable user experience in a level.

Designing a level is a long process, mostly because so many factors go into
making an intensely enjoyable experience. A level that looks good will attract play-
ers to it, but it won’t keep their interest for long if there isn’t anything fun for them
to do. A fun level will keep only the most dedicated players if it’s set in a series of
identical-looking concrete rooms, each lit by a single light bulb. A level that’s far too
easy, or far too hard, or where difficulty is wildly inconsistent, will not be played for
long either.

The point here is that to design a good-looking, challenging, fun, bug-free in-
teractive environment, you need to be spinning many, many “plates,” making sure
that all of the factors are within acceptable levels and trying not to concentrate on,
or neglect, certain factors in lieu of the whole experience. A level designer needs to
make sure all aspects of the level are in balance (see Figure 4.1). This chapter will
deal with the beginning of the process, where you’ll be making choices that will cre-
ate a framework for the rest of the design and construction process. In some cases,
this information will simply be given to you, in the form of an existing document
or through verbal instructions by your lead designer. This is likely if you are join-
ing a team midway through making a game, but it is uncommon that a level de-
signer is simply given a blind set of criteria and instructions and told to go make a
fun map—the two are like oil and water.

One thing to keep in mind is the balance between fun and feasibility. Many of
the best levels give the feeling of epic-scaled environments or that the player is
making important choices all the time. In the Thief series of games, for example, the
player is always an unwitting participant in a struggle against evil, and the player is
constantly led to understand that his actions in the world will determine the fate of

In this chapter, we’ll go over the “high” concepts that provide the proper foun-

Basic Level Design Theory 57

FIGURE 4.1 Level design is about
spinning plates.

the world. Or, in Dark Cloud 2, the player must rebuild the world after it has been
ravaged by an evil force. This illusion of power is almost always fakery. Your job is
to make players feel like they are in a believable environment, encountering believ-
able situations, and making believable choices, when really you are guiding them
through a world that’s only as big as what they can see or interact with.

It’s also important at this stage to get in the habit of analyzing your decisions.
The most unashamedly ambitious ideas are usually born at the beginning of pre-
production, especially in group design meetings where ideas can be borne aloft on
the enthusiasm of a room full of developers beginning a new project. It's important
that you judge the feasibility of your choices at this point and not start out design-
ing a level that’s simply too ambitious to ever be made. This is not to say you can’t
be creative, but when you see a potential problem, or the possibility of a problem in
alevel at this stage, immediately changing it will take a lot less effort than realizing it
a week before the game’s alpha deadline. As a level designer, one of your responsi-
bilities is to make sure the level is not only built, but that it plays well and doesn’t
slow to a crawl whenever the player walks outside. If something about your level’s
location or environmental settings makes you nervous, it’s best to deal with it now.

WHAT MAKES THE LEVEL FUN

The beginning of a new project is an exciting moment. The game is like a blank can-
vas, with an initial design framework or concept in place and the first seed ideas of

Game Level Design

your level, and you have a thousand ideas already that you want to start working
on. However, tempting as it is to fire up the editor and begin building at this stage,
you must resist. Before you even pick up a pencil and start sketching (which we’ll
cover later in Chapter 7), you’ll need to address some important concepts about the
foundation of your work to come. The first concept is the most important one of
all. What makes a level fun to play? Although the game itself may have a lot of fun
things to do, what specifically can you, as the level designer, do to make sure that
the player has a great time in your map?

First, asking a game developer to define “fun” is like asking a chef to define
“taste.” In the end, it’s such a subjective concept—there is no true definition other
than what you know but cannot put into words properly. This is instinct—and as
alevel designer, you'll need to trust your instincts so you can deliver the kind of fun
the game requires.

For instance, the fun in a first-person shooter (FPS) may simply be in success-
fully dodging your opponent’s shots while returning fire accurately and destroying
him. Much like tennis, the fun is in the give-and-take action that doesn’t end until
someone loses. It’s the kind of fun you feel with your whole body, actually physi-
cally moving closer to the screen when in combat, or jumping when an opponent
races around a corner in front of you.

On the flip side, a game like The Sims® is an entirely different experience for
fans. Balancing the needs of their avatar, trying to maintain an optimum level of
comfort, career, and environment, finally purchasing an item for their virtual home
that they had wanted for ages, or manipulating the complex social relationships be-
tween characters, are all fun yet entirely different from the fun of playing a shooter.

Instead of painting a bleak picture where everything is created from experimen-
tation and luck, there are indeed ways to determine how enjoyable and immersive a
game level can be—there are universal concepts in level design that you can learn to
identify and manipulate to create a fun experience for whoever your player is. In a
nutshell, these key concepts are the following:

Ergonomics
Flow
Rhythm
Difficulty
Wow Factor
Hooks

Let’s look at these concepts in detail and see what role they play in affecting the
player’s experience.

Basic Level Design Theory 59

PLAYER ERGONOMICS—NO LEARNING BY DEATH

One thing all designers share—whether designing games or designing desk lamps—
is that they must always keep the user in mind. This is especially important for level
designers to remember as they get deeper in the game and begin to lose sight of the
overall difficulty and scope of the game for the average player. If at any time during
a game the player is able to blame the level designer for failure, rather than them-
selves, we've lost them. No matter how cool a level looks, no matter how bug-free or
polished the gameplay, if a level contains areas or elements that cause frustration for
the players, it will reduce the overall quality of the experience for them.

This concept is called player ergonomics—the act of identifying possible areas
of frustration in the level and addressing them to maintain a high level of comfort
for the player. Everything designed has a level of ergonomics. The book you’re
reading has a font size that most people can read easily, porous pages to prevent
them sticking, and a spine to keep it all together. Without these elements, reading
it would not be impossible, but it would be a great deal more difficult. Likewise, 'm
sure you can instantly think of many examples of a game you really enjoyed that
suddenly presented a challenge so hard, or a situation so unfathomable, that you
put the controller down and turned off the console. This is often a case of bad
player ergonomics.

An illustration of bad ergonomics is a level designer blocking some part of a
map by a never-ending stream of enemies. The designer realizes that if the player
exits the level before they have destroyed all three generators, the next level (escap-
ing the powerless refinery) won’t make sense. With a deadline approaching, he
quickly sets up a group of spawn points near the exit to generate enemy guards. If
the player tries to exit, the guards will keep reappearing and denying him exit until
he either goes and destroys all of the generators or runs out of health and dies. He
explains to the lead designer, “After dying a few times, the player will realize he just
can’t leave yet and will be forced to finish his objectives.” And the lead designer
replies, “At which point he will be throwing his console at the wall.”

This is also a great example of a level flow coming to a grinding halt. The play-
ers may think that if they can shoot X amount of guards they’ll win and be allowed
to end the level. The only way they’ll realize it’s an impossible situation is by dying
over and over again and having it dawn on them that this is a completely artificial
situation designed to keep them from progressing.

Usually, this is an honest mistake. It’s quite common for a game’s difficulty to
exceed the ability of a player at some stage during play, or for the player to do
something the designer never thought possible. This is why play testing and Q&A
are vitally important—without the benefit of new eyes seeing a level, the designer
is at risk of committing ergonomically criminal gameplay that assumes the average
player will find only mildly challenging, or creating vast and complex events that

60 Game Level Design

can break at the slightest path deviation. As you gain experience as a level designer,
you will gain greater ability to see your level through the player’s eyes, and to an-
ticipate or isolate spots where the player may become frustrated. However, there’s
no substitute for having someone else play through your work and alert you to
problems that may have been invisible to you.

SIDEBAR

A great example of ergonomics is the game ICO for the PlayStation 2. In this
game, the player cannot kill the main character without intentionally jump-
ing over a precipice, and even then only after the main character catches him-
self and allows the player an opportunity to climb back up without dying. In
addition, early levels of the game are in enclosed rooms—there is no way for
the player to die and have to restart, while learning the controls and becom-
ing accustomed to the game mechanics and amazing visual style. The player
is eased into the controls, the gameplay, the situations that will allow him to
fail at a smooth pace that, ergonomically speaking, is a great model of how a
game should begin—no learning by dying and restarting ad nauseam.

Later in the game, when the player is protecting another character, he can
leave her temporarily to scout ahead and solve puzzles to allow her to progress.
However, she is vulnerable while the player is not around and can be attacked
by creatures that appear out of the shadows around her. When this happens,
the player is given an audible warning (the princess shouts in alarm) and the
camera will quickly cut to her to remind the player where she is. He is then
given a certain amount of time to run back and defeat the creatures. This is an-
other great example of ergonomic design—the needs of the player are catered
to, and he is given a fair chance to rectify his mistake without being punished.

Some hard and fast rules that will allow you to keep up the ergonomic quality
of your level are saving and reloading, giving clues, and being aware of the player’s
comfort level.

Allow Players to Save and Reload

Allow the player to save frequently. If this is not allowed by the game design, place
save points frequently or allow the player to recharge and restock after major en-
counters. Being forced to replay parts (or all) of a level multiple times before a

Basic Level Design Theory 61

player can finish it is one of the biggest complaints about games. No matter how
fun a level is, it will get tedious if you are forced to replay it more than a few times
in a row. Don’t let this happen to your players, or at least give them the chance to
succeed. If they don’t stop long enough to recharge their health between fights,
that’s their choice and they can’t blame you, the designer.

. Give Clues

Don’t let players get lost. Try to avoid, at all costs, putting a simple maze in your
map, thinking it will be challenging to the player or extend the life of your level. A
maze where the player has to solve it by trial end error is an exercise in frustration,
and will often simply result in the game becoming a “coaster”—the disk makes a
better drink coaster than a game. A player needs access to clues and information
about how to progress through a level when he is stuck. A maze that has a system
the player can learn, and use to quickly find his way through is a better option; for
instance, in the game Myst the player is shown an interactive compass that plays a
sound effect at each cardinal direction. Later, in a seemingly endless maze, the
player can listen to sound played at each intersection and using their knowledge of
the compass sounds, determine which direction they need to go. Other ways of giv-
ing clues are characters that will sell more and more obvious hints for increasingly
higher prices, or emails left on computers or notes on bodies that hint at how to
progress through a puzzle or obstacle. Players are free to ignore these, but doing so
relieves the designer of blame when they get stuck. A player will never accuse you
of being too helpful, unless you are blatantly telling him how to beat each challenge
before he has had a chance to work it out alone.

Be Aware of the Player’s Comfort Level

This ties into the concept of level difficulty, which we will discuss a few sections
later. However, for the player’s comfort, always remember the rate at which the
player is learning your game’s many systems and rules. Don’t suddenly dump a
completely new rule on players with no warning before they’ve even worked out
how to fire their secondary weapon or jump consistently.

An example of ergonomic oversight in this area is Daikatana. Although this
game does have many interesting features and solid design elements, one of the
things that put many gamers off was the introduction of very challenging enemies
(in the form of hard-to-target flying mosquito robots) in the first level. This wasn’t
simply a matter of difficulty—small, fast-moving flying opponents are always chal-
lenging to hit when you’re using a mouse or console controller to aim. Putting them
in the level where the player is getting used to the controls, how the weapons handle,
and how the rules of the game work is a violation of the player’s “ergonomic rights.”

62

Game Level Design

LEVEL FLOW-KEEP THE PLAYER MOVING

Players can suffer “disconnects” in many ways—when they reach a point in the
game where they are suddenly dumped back into the real world, or the fun drops
to a point where it’s no longer worth the time to play it. The former problems can
often come about from a lapse in ergonomics. The latter problem—the game going
from fun to tedious—often occurs when a level’s “flow” breaks down. Flow and
rhythm are deeply connected concepts, and hard to separate concretely, but we will
try to do so with the next two sections.

Dissonance and the Importance of Believability

The concept of “level flow” is admittedly nebulous. There are a lot of definitions
floating around, but generally, the level designer is the invisible hand guiding the
player through each environment in a game, sometimes by pushing him to go
through a certain doorway or defeat a particular challenge, and often by subtly
pulling him along by using lighting, sound effects, item placement, and other “bread
crumbs” (a term that comes from the old fairy tale of Hansel and Gretel, where two
lost children left a trail of bread crumbs behind them that would guide them back
home when they got lost). In either case, the more aware the player is of the level de-
signer’s influence, the less fun the level will be, just because it’s obvious that things
have been engineered to happen artificially. Naturally, a lot of game experiences are
engineered by the level designer; however, the player will quickly notice if the same
sort of event is recurring a lot, or will easily spot something completely out of con-
text such as a stack of explosive barrels in a supermarket parking lot. This feeling that
something is out of place is called dissonance and can be a very effective tool for cre-
ating tension or creeping the player out, but only when used sparingly, which we’ll
discuss in later chapters. A great deal of dissonance, like a row of toilets in a kitchen,
will bother the player enough to question his surroundings unless the level’s theme
is a dream-like or nightmarish place where reality is skewed. Silent Hill and its se-
quels all rely on constantly having the player question the reality of his surroundings,
or the creatures he is fighting, and it works brilliantly within the context of the game.
However, sticking a Silent Hill level smack in the middle of a Mario game will prob-
ably not be the successful juxtaposition you’d hoped for when the gaming public
tries it.

Another very obvious way to create bad flow is physically blocking the player,
or making him perform complex maneuvers for what should be simple tasks. A
very crude example is a series of alcoves along a corridor in a shooter game, each
containing a single clip of ammunition. The player will need to move into an alcove
to pick up the ammo, back up or turn around and move to the next alcove, and re-
peat this several times to pick up the same amount of ammunition the designer

Basic Level Design Theory 63

might have allowed him if the clips were placed along the center of the corridor, or
in a group in a single alcove. This doesn’t seem like such a big problem in a slower-
paced game, but in a furious action game, every second counts. Ask any serious
Quake 3 player—these folks will buy graphics cards for hundreds of dollars just to
get an edge over their online competitors. Flow in an action game is a serious mat-
ter, and the flow of a player through the environment becomes much like designing
a racing car—you need to think about it like aerodynamics, allowing the player to
run through the map picking up items and weapons, attacking and retreating, cap-
turing the flag, or whatever he needs to do, without having to weave in and out of
pillars, stop to jump up on crates (Figure 4.2), or pause to enter a code on a door
to open it. Often forcing players to perform tedious tasks in a level is simply mak-
ing them jump through hoops.

FIGURE 4.2 Stopping to jump on crates in an action shooter can be a flow-breaker.

Naturally, if you are creating a level for a platform game, players will be ex-
pecting to jump on several difficult-to-reach ledges to collect certain items. That’s
what they’re paying for. Be aware of what flow means to your game, and design
your level for that. Adventure games can suffer from too many irrelevant action se-
quences, but they also suffer from puzzle after puzzle with no break in between, for
example. This is why games like Myst place “whimsical” items or interactive objects

64 Game Level Design

in the game levels for the player to play with, allowing them a mental break between
logic puzzles, and the chance to simply see something cool.

The Constant Danger of Boredom

Dissonance or jumping through too many hoops is only one occurrence that can
break the flow. More commonly, it’s simply a matter of the player becoming bored.
Don’t assume that boredom is only caused when the player isn’t doing enough to
be entertained. A player can often become bored by doing the same thing for too
long, even if that thing is something we developers consider exciting. Shooting
things and having them blow up is a mainstay of the gaming culture. However, very
few games where players do nothing but keep their fingers on the triggers and see
things explode will keep their attention for more than a few hours. Boredom can be
categorized into two basic forms:

Mental boredom comes from seeing the same things, hearing the same sounds
and music, or playing essentially the same gameplay repeatedly seemingly with-
out end.

Physical boredom comes from a lack of interaction or physical movement. If
players are simply watching the same 10 pixels on the screen, if they are holding
down one key for minutes at a time, or are so disengaged that they become
aware they’re sitting in an uncomfortable chair for hours, they will become
bored.

SIDEBAR

An interesting example of potential boredom can be seen in some older ar-
cade games designed to keep players’ adrenaline pumping so much that they
would feel the need to keep shoving quarters in the machine to keep the ex-
perience going. For example, Robotron, the classic action shooter by Eugene
Jarvis, dropped the player into an unwinnable situation from the start—in
every level, a greater number of more powerful enemies advances on the main
character. The player is forced to shoot constantly and keep moving or he will
quickly find himself surrounded and ultimately out of lives.

For an arcade machine, this is a perfect formula—the game is so insanely
difficult that a play session for the average player will only last a few minutes,
requiring a new quarter to continue. This is great news for the arcade owner,
who is emptying the coin box every night, but in reality this sort of game

-y

Basic Level Design Theory 65

quickly gets boring if the player can just continue to play whenever they die.
Take away the risk of restarting the entire game each time you lose your lives
and there becomes little point in playing it for more than an hour—there’s so
little variety of experience that the game cannot maintain the attention of a
normal human for long enough to be worth paying $40 for.

Recently, a shareware game called Crimsonland brought the gameplay
of Robotron to the modern gaming public. However, rather than simply re-
creating the arcade experience, the developer included many boredom-
relieving features: powerups, gaming modes, choices to be made during levels,
different ways to control the main character or to aim—all these elements al-
lowed a better flow and a bigger variety of experience—mental and physical—
to the game, making it a much more viable candidate for longer play sessions.

How do we prevent a player from getting bored in a level? We drive him ahead,
like a sheepdog herds a sheep—through subtle temptation, direction, and the threat
of a painful bite on the rear if they don’t do it right. Many times a level designer
must lead the players through the environment or push them in a direction, but at
all times the players must be driven or the game will become stagnant, with the
player left wondering or searching for what to do next.

Ideally, players will be driven through a level by a combination of many ele-
ments. A light illuminating a doorway at the end of a corridor, a conversation over-
heard below them, an imminent explosion behind them, or even a simple timer
ticking away in the corner of the screen (though this is dangerously close to be-
coming a game design stereotype, the player racing against a disembodied timer on
the game’s interface). In all these cases—and throughout the level—a player has to
want to progress. Flow is created by stringing together a long a series of interesting
encounters, revelations, and rewards for players. Unfortunately, it’s much easier to
kill the flow than create it. Laziness or neglect of “unpopular” areas of a level can
often kill the flow. If both directions at a t-junction seem equally intriguing to play-
ers, you cannot punish them for picking the wrong one by simply making it a long,
boring dead-end; not only is this a case of bad ergonomics, it’s a serious break in the
flow of the level. Forcing the player to backtrack through a level can be an interest-
ing game element if the level has changed sufficiently in the meantime or if there are
new challenges on the way back. Making both of those directions eventually lead to
the same destination—perhaps with very different challenges or experiences en
route—keeps the flow going. However, simply forcing the player to go from one
end of the map to the other constantly, spending long minutes simply trudging
through the same space every time, will surely reduce the flow to a crawl.

Game Level Design

When we talk about flow in general game and level design, it’s not just the flow
between the start and end of a map. It’s also the parts in between. Whether your
game will use cinematics to illustrate the transitions between levels, or each level
will load immediately after the next, the continuity of atmosphere and the player’s
sense of place must remain continuous. If the player reaches a critical goal in the
center of the map, and then the next thing he knows, he’s back at HQ getting
briefed on the next mission, there is a significant disconnect. You might want to ex-
tend the level to have the player reach an escape point, or at the very least a cine-
matic showing the main character leaving the level environment bound for home.

SIDEBAR

Imagine a level in an abandoned military complex being used as a base by a
local gang of werewolves. The long-dormant shapes of military robots create
shadows in the gloom of the torch-lit interior in which the player can hide and
snipe his unsuspecting prey on his way to the level’s sole objective—activate
the generator on the bottom floor of the complex. The way into the objective
is a milk run, with lots of sniping and unwitting guards to run up to and dis-
pose of with a variety of weapons.

The player reaches the generator room easily and completes the proce-
dure to get it back on line. It hums to life, lights flicker on, and the player
leaves to head back up to the exit. As he reaches the doorway, however, the
screen shakes a little and the rhythmic sounds of thumping can be heard from
above. That would be the sound of several long-dormant military robots
warming up their Gatling guns and resuming their patrols. The player may
have completed the objective successfully but the level is far from over. By
completing his primary goal, he just reactivated the base’s interior security
systems. Though the level architecture remains the same, the player is now
faced with a completely new challenge—getting out of the level will require a
great deal more skill than getting in. The player’s weapons are no good against
the armor-clad security droids, and he must now formulate a plan of avoid-
ance and distraction. Changing the gameplay topography of the level has
changed the flow of the level and given the player a whole new reason to fin-
ish the level as quickly as possible.

Simply having players walk back through five minutes of empty corridors and
the bodies of previously slain enemies is simply going to bore the player. There’s no
draw in progressing, and when the draw ends and the player doesn’t want to move
forward, the flow is dead.

Basic Level Design Theory 67

RHYTHM-CREATE A ROLLER COASTER RATHER THAN A HIGHWAY

Flow controls the player’s frustration, and along with rhythm, keeps players from
ever feeling so disconnected or negatively jarred out of the gaming experience that
they don’t want to play anymore.

Rhythm is a way of expressing the pattern, frequency, and intensity of the se-
quences of events in a level. For linear levels in simple games, it’s easy to control
rhythm, but for more open-ended and organic game environments, it can be nearly
impossible to exert a lot of control. However, we know that a game level is gener-
ally a series of events and experiences, regardless of whether we choose the order in
which they happen or the player determines it. We have to then allow for a range
of experiences to keep players interested.

- In almost all forms of entertainment, the rhythm of events is used to draw the
audience in, to set up expectations, and to deliver surprises. A horror novel where
the protagonist simply walks through a bunch of mildly creepy corridors for the en-
tire book without encountering a single obstacle or creature is not going to have
many readers. Neither would a war drama where the hero hides in a barn for the
duration of the conflict, emerging only after the armistice has been signed. In both
these examples, there is a recognizable element of storytelling, but it is the only el-
ement throughout. To create tension—if only in the player’s imagination—there
has to be diversity of experience, pauses for effect, sudden and unexpected occur-
rences, and long, disturbing sections dripping with suspense. If the experiences are
too diverse or misplaced, you will lose your audience; as a level designer, you need
to have a feel for the emotional state of your player as he progresses through the
map or mission and have an instinct about what would be a good direction to turn
the play to keep his attention.

The most direct comparison might be to the beat of your favorite song.
Chances are, it isn’t a flat, repeated rhythm that doesn’t change from start to finish.
Drummers use flourishes, different types of drum and percussion instruments, and
the occasional solo to drive the song along rhythmically. Otherwise, the song will
sound flat. The same is true for games—a level designer needs to use the myriad
means at his disposal to create a roller coaster of experiences to keep players on
their toes. You can learn a great deal about rhythm in different media by watching
movies, plays, attending classical concerts, or reading novels. A great contemporary
example of the use of rhythm is the movie Finding Nemo. The length and position-
ing of scenes next to each other—the jump from action to drama, happy moments,
and moments of despair—is brilliant and would show a very diverse but climbing
graph of ups and downs of the user’s emotional being while watching. The same
pacing and focus on building the player’s excitement can be used for almost any
kind of game level.

Game Level Design

SIDEBAR

In a space shooter, the player is told to investigate the disappearance of a
cruise liner that has requested aid. The player is told it is a routine mission and
outfitted with minimal armaments.

As players approach the first waypoint, their radio goes dead. A little fur-
ther in and they begin to see pieces of wreckage fly by. When they reach the
waypoint itself, there is a constellation of wreckage but no cruiser. Suddenly, a
warning light flashes, indicating incoming fire, and the player is engaged by
several enemy fighters. After a short battle, the fighters suddenly turn tail and
retreat, and the player is able to easily finish them. The radio comes on again
and a relieved cruiser captain thanks the player for saving his crew and pas-
sengers. The player heads for where the cruiser is now shown on the radar and
approaches to begin escorting the cruiser home. All of a sudden, when the
player is just a few kilometers away, the cruiser erupts in a massive fireball of
burning gases and fuel. No sooner has the fireball formed, than a black shape
glides through it—the distinctive shape of an enemy battleship bristling with
guns. It’s the player’s turn to panic now, dodging huge pieces of speeding de-
bris and enemy fire to take on the battleship single-handedly.

In the sidebar example, there are a few high-intensity moments punctuated by
pauses in action or smaller respites. In some cases, the player is totally engaged—at-
tacking or being attacked—but at other points, he is cautious; at others, he perhaps
hovers just above boredom level for a short while. If we take all of these moments,
we can probably show them more clearly as a graph as demonstrated in Figure 4.3.

INTENSITY OF EXPERIENCE

TIME

FIGURE 4.3 An example rhythm graph for an average game.

Basic Level Design Theory 69

Now, this is just for example. Don’t try to plot the rhythm of your level in so
much detail that you are afraid to change it, or it takes a week of work to complete.
However, you should probably be aware of the overall rhythm of your map, and
writing down the key moments and pivotal experiences in sequence to spot areas
that need more work. You can do this in a “cell” diagram, as shown in Figure 4.4.

FIGURE 4.4 A cell diagram of the rhythm example showing key
moments or “beats.”

So, as you can see, it’s quite important to determine the rhythm of your level in
its infancy, where things are more organic and change is easily accomplished in-
stead of reworking vast portions of the level geometry a month before alpha. By
keeping the player on a roller coaster of experiences and interactions, you create
gameplay. Without sufficient rhythm, the player is basically out for a Sunday drive.
With haphazard or huge spikes in rhythm, the player may simply be exhausted by
the middle of the map.

Aesthetic Rhythm

As we described at the beginning of the book, the craft of level design is not purely
functional, and not always related directly to gameplay. Take care to make sure the
look and mood of your level flows along with the gameplay. This is largely what we
described as dissonance in the previous section—visual elements that seem out of
place, but it can be subtle enough that the player isn’t aware of why he feels the

70

Game Level Design

rhythm flattening out or that he’s just in a virtual environment and not a real liv-
ing world, just that he does. Some commonly recurring examples of this kind of
subtle break in the visual pace are drastic changes in textures, models, or lighting
styles or shifts in quality.

Drastic Changes in Textures, Models, or Lighting Style

When the walls of a corridor shift from metal plating to rubber padding, you’re
going to notice, no matter how involved in the game you are. Subtle transitions be-
tween environmental elements can be a great way to invoke emotions in the player,
and we’ll go over this more in later chapters covering techniques in building levels.
Ifhandled inappropriately, however, it can also be a jarring experience for players—
even if they don’t consciously realize it! One consideration in dealing with aesthetics
such as lighting and texturing is that they often affect the viewer in very subtle ways.
For example, let’s say you are making a stealth-shooter. When players move
through a series of caverns with a rocky texture on the walls and deep blue lighting,
they will feel immersed in a damp, subterranean mood. However, if they transition
suddenly to a brightly lit, red-saturated room with concrete walls, their brains will
register a change in situation, even if the gameplay or the enemy type remains the
same. The player will stop and think, “Where the heck am I? I thought this was the
Cavern of the Wizard Del, not a high school furnace room!” They will begin to ask
themselves what this change means—what could be the significance of red instead
of blue? Does the fact that the walls are man-made give a clue to some kind of up-
coming event or is it a clue that the player must change tactics? If the answer is “yes”
to these questions, you’ve successfully given the player a warning about impending
gameplay shifts, and that’s an example of good ergonomics. If the answer is “no,”
then you’ve made the player stop and think for no reason, which may bring a
screeching halt to the game-trance he’s been in up to now, or may cause him frus-
tration that he spent 20 minutes looking through his mission briefing for some clue
about the paradigm shift, putting a big dead space in the game’s rhythm graph.

Shifts in Quality

Sadly, one lingering truth in level design is that, as an iterative process, many times
the designer creates different areas of a level with more or less attention. Generally,
the ebb and flow of quality isn’t noticeable at all by the player. Sometimes, though,
if you had to rush through the last half of your map, plopping down enemies hap-
hazardly and throwing textures on the walls like Jackson Pollock in a paint store,
you may find your player actually stops playing when he notices the drastic lapse in
quality compared with the first half of the level, which was brilliant.

Previously, we’ve covered bad flow as being a disconnection problem, where
someone playing the level breaks out of their experience by boredom, frustration,

Basic Level Design Theory n

unease, or any sudden negative shift of emotion by an incorrectly placed element.
You need to weight the design elements so that they feel right, but there’s no hard
and fast formula for that beyond experience and instinct. If the player is having a
great time in a survival horror game, walking down darkly lit corridors one minute,
suddenly to be fighting off zombie dogs another, it’s a balancing act of emotions
you as a designer are performing, choosing the right moments to introduce factors
from your designer’s deck of cards that will give the player exciting ups and downs,
side-to-sides, and zigzagging changes of pace.

However, when the player begins to feel that he is not getting the real deal, or
not getting the designer’s attention, no amount of rhythm will save the map. It may
even be made worse by pouring all your effort into the beginning of the level (this
is why it’s a good idea to start designing your level from anywhere but the start).
Once you've tasted cheese, it’s hard to go back to plain crackers. It’s the same with
delivering a consistent effort in your design and implementation, and making sure
you don’t play all your rhythm cards at the start of game.

DIFFICULTY—-LET THE PLAYER WIN, NOT THE DESIGNER

The different design elements and techniques I've talked about until now—er-
gonomics, rhythm, and flow—are all pivotal to creating a great play experience. How-
ever, encompassing all these elements is the notion of difficulty as a level design tool.

Every game has a difficulty curve (see Figure 4.5). By extension, every level—as
a point on that curve—has a level of difficulty assigned to it. Actually, we call it a
curve, but ideally, it will be more like a wave when looked at closely. Why is this? A
steady, linear progression of similar events is not really fun, even if it’s steadily

DIFFICULTY

TIME

FIGURE 4.5 A simple difficulty curve.

72

Game Level Design

going up. A game level that simply gets harder the more you play is not delivering
on what makes games so different from other mediums—interactivity and being
able to respond to the individual actions of the player. Even a game like Tetris,
which on a surface level is about a steady increase of difficulty, has random inter-
vals where the blocks are easier to place than others.

Figure 4.6 shows a much better example of a game difficulty graph: It repre-
sents smaller areas of difficulty increase where a player is challenged more and
more, finally building to a goodly test of the players’ skill, at which point the graph
dips again—or simply plateaus—allowing players to gain control of the level and
feel like they have surpassed the skill of their opponents. This is also a